Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2018

01-03-2018 | NON-THEMATIC REVIEW

Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting

Authors: William Hankey, Wendy L. Frankel, Joanna Groden

Published in: Cancer and Metastasis Reviews | Issue 1/2018

Login to get access

Abstract

The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
Literature
1.
go back to reference Cheng, Y. W., et al. (2008). CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clinical Cancer Research, 14(19), 6005–6013.PubMedPubMedCentralCrossRef Cheng, Y. W., et al. (2008). CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clinical Cancer Research, 14(19), 6005–6013.PubMedPubMedCentralCrossRef
2.
3.
go back to reference Samowitz, W. S., et al. (2007). APC mutations and other genetic and epigenetic changes in colon cancer. Molecular Cancer Research, 5(2), 165–170.PubMedCrossRef Samowitz, W. S., et al. (2007). APC mutations and other genetic and epigenetic changes in colon cancer. Molecular Cancer Research, 5(2), 165–170.PubMedCrossRef
4.
go back to reference Shen, L., et al. (2007). Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18654–18659.PubMedPubMedCentralCrossRef Shen, L., et al. (2007). Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18654–18659.PubMedPubMedCentralCrossRef
5.
go back to reference Mirabelli-Primdahl, L., et al. (1999). Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Research, 59(14), 3346–3351.PubMed Mirabelli-Primdahl, L., et al. (1999). Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Research, 59(14), 3346–3351.PubMed
6.
go back to reference Akiyama, Y., et al. (1997). Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology, 112(1), 33–39.PubMedCrossRef Akiyama, Y., et al. (1997). Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology, 112(1), 33–39.PubMedCrossRef
7.
go back to reference Calin, G. A., et al. (2000). Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: a study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes. International Journal of Cancer, 89(3), 230–235.PubMedCrossRef Calin, G. A., et al. (2000). Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: a study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes. International Journal of Cancer, 89(3), 230–235.PubMedCrossRef
9.
go back to reference Deng, G., et al. (2004). BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clinical Cancer Research, 10(1 Pt 1), 191–195.PubMedCrossRef Deng, G., et al. (2004). BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clinical Cancer Research, 10(1 Pt 1), 191–195.PubMedCrossRef
10.
go back to reference Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Altekruse, S. F., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J., & Cronin, K. A. (Eds.). (2016). SEER cancer statistics review, 1975–2013. Bethesda: National Cancer Institute. Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Altekruse, S. F., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J., & Cronin, K. A. (Eds.). (2016). SEER cancer statistics review, 1975–2013. Bethesda: National Cancer Institute.
11.
go back to reference Jen, J., et al. (1994). Molecular determinants of dysplasia in colorectal lesions. Cancer Research, 54(21), 5523–5526.PubMed Jen, J., et al. (1994). Molecular determinants of dysplasia in colorectal lesions. Cancer Research, 54(21), 5523–5526.PubMed
12.
go back to reference Stein, U., et al. (2009). MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nature Medicine, 15(1), 59–67.PubMedCrossRef Stein, U., et al. (2009). MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nature Medicine, 15(1), 59–67.PubMedCrossRef
13.
go back to reference Linardou, H., et al. (2008). Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. The Lancet Oncology, 9(10), 962–972.PubMedCrossRef Linardou, H., et al. (2008). Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. The Lancet Oncology, 9(10), 962–972.PubMedCrossRef
14.
go back to reference The Cancer Genome Atlas Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337. The Cancer Genome Atlas Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337.
15.
go back to reference Powell, S. M., et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature, 359(6392), 235–237.PubMedCrossRef Powell, S. M., et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature, 359(6392), 235–237.PubMedCrossRef
16.
go back to reference Miyoshi, Y., et al. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Human Molecular Genetics, 1(4), 229–233.PubMedCrossRef Miyoshi, Y., et al. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Human Molecular Genetics, 1(4), 229–233.PubMedCrossRef
17.
go back to reference Groden, J., et al. (1991). Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 66(3), 589–600.PubMedCrossRef Groden, J., et al. (1991). Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 66(3), 589–600.PubMedCrossRef
18.
go back to reference Nishisho, I., et al. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science, 253(5020), 665–669.PubMedCrossRef Nishisho, I., et al. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science, 253(5020), 665–669.PubMedCrossRef
19.
go back to reference Joslyn, G., et al. (1991). Identification of deletion mutations and three new genes at the familial polyposis locus. Cell, 66(3), 601–613.PubMedCrossRef Joslyn, G., et al. (1991). Identification of deletion mutations and three new genes at the familial polyposis locus. Cell, 66(3), 601–613.PubMedCrossRef
20.
go back to reference Kinzler, K. W., et al. (1991). Identification of FAP locus genes from chromosome 5q21. Science, 253(5020), 661–665.PubMedCrossRef Kinzler, K. W., et al. (1991). Identification of FAP locus genes from chromosome 5q21. Science, 253(5020), 661–665.PubMedCrossRef
21.
go back to reference Giardiello, F. (1995). Gastrointestinal polyposis syndromes and hereditary nonpolyposis colorectal cancer. In A. K. Rustgi (Ed.), Gastrointestinal cancers: biology, diagnosis, and therapy (pp. 367–377). Philadelphia: Lippincott-Raven. Giardiello, F. (1995). Gastrointestinal polyposis syndromes and hereditary nonpolyposis colorectal cancer. In A. K. Rustgi (Ed.), Gastrointestinal cancers: biology, diagnosis, and therapy (pp. 367–377). Philadelphia: Lippincott-Raven.
22.
go back to reference Ichii, S., et al. (1993). Detailed analysis of genetic alterations in colorectal tumors from patients with and without familial adenomatous polyposis (FAP). Oncogene, 8(9), 2399–2405.PubMed Ichii, S., et al. (1993). Detailed analysis of genetic alterations in colorectal tumors from patients with and without familial adenomatous polyposis (FAP). Oncogene, 8(9), 2399–2405.PubMed
23.
go back to reference Levy, D. B., et al. (1994). Inactivation of both APC alleles in human and mouse tumors. Cancer Research, 54(22), 5953–5958.PubMed Levy, D. B., et al. (1994). Inactivation of both APC alleles in human and mouse tumors. Cancer Research, 54(22), 5953–5958.PubMed
24.
go back to reference Luongo, C., et al. (1994). Loss of Apc+ in intestinal adenomas from Min mice. Cancer Research, 54(22), 5947–5952.PubMed Luongo, C., et al. (1994). Loss of Apc+ in intestinal adenomas from Min mice. Cancer Research, 54(22), 5947–5952.PubMed
26.
go back to reference van den Broek, E., et al. (2016). Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget, 7(45), 73876–73887.PubMedPubMedCentralCrossRef van den Broek, E., et al. (2016). Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget, 7(45), 73876–73887.PubMedPubMedCentralCrossRef
27.
go back to reference Samowitz, W. S., et al. (1999). β-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Research, 59(7), 1442–1444.PubMed Samowitz, W. S., et al. (1999). β-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Research, 59(7), 1442–1444.PubMed
28.
go back to reference Sparks, A. B., et al. (1998). Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Research, 58(6), 1130–1134.PubMed Sparks, A. B., et al. (1998). Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Research, 58(6), 1130–1134.PubMed
29.
go back to reference Morin, P. J., et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275(5307), 1787–1790.PubMedCrossRef Morin, P. J., et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275(5307), 1787–1790.PubMedCrossRef
30.
go back to reference Orford, K., et al. (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. The Journal of Biological Chemistry, 272(40), 24735–24738.PubMedCrossRef Orford, K., et al. (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. The Journal of Biological Chemistry, 272(40), 24735–24738.PubMedCrossRef
31.
go back to reference Behrens, J., et al. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 280(5363), 596–599.PubMedCrossRef Behrens, J., et al. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 280(5363), 596–599.PubMedCrossRef
32.
go back to reference Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3020–3023.PubMedPubMedCentralCrossRef Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3020–3023.PubMedPubMedCentralCrossRef
34.
go back to reference Munemitsu, S., et al. (1995). Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 3046–3050.PubMedPubMedCentralCrossRef Munemitsu, S., et al. (1995). Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 3046–3050.PubMedPubMedCentralCrossRef
35.
go back to reference Yost, C., et al. (1996). The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes & Development, 10(12), 1443–1454.CrossRef Yost, C., et al. (1996). The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes & Development, 10(12), 1443–1454.CrossRef
36.
go back to reference Ikeda, S., et al. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17(5), 1371–1384.PubMedPubMedCentralCrossRef Ikeda, S., et al. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17(5), 1371–1384.PubMedPubMedCentralCrossRef
37.
go back to reference Yamamoto, H., et al. (1998). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Molecular and Cellular Biology, 18(5), 2867–2875.PubMedPubMedCentralCrossRef Yamamoto, H., et al. (1998). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Molecular and Cellular Biology, 18(5), 2867–2875.PubMedPubMedCentralCrossRef
38.
go back to reference Seeling, J. M., et al. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283(5410), 2089–2091.PubMedCrossRef Seeling, J. M., et al. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283(5410), 2089–2091.PubMedCrossRef
39.
go back to reference Gao, Z. H., et al. (2002). Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1182–1187.PubMedPubMedCentralCrossRef Gao, Z. H., et al. (2002). Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1182–1187.PubMedPubMedCentralCrossRef
40.
go back to reference Su, L. K., Vogelstein, B., & Kinzler, K. W. (1993). Association of the APC tumor suppressor protein with catenins. Science, 262(5140), 1734–1737.PubMedCrossRef Su, L. K., Vogelstein, B., & Kinzler, K. W. (1993). Association of the APC tumor suppressor protein with catenins. Science, 262(5140), 1734–1737.PubMedCrossRef
41.
go back to reference Rubinfeld, B., et al. (1997). Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Research, 57(20), 4624–4630.PubMed Rubinfeld, B., et al. (1997). Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Research, 57(20), 4624–4630.PubMed
42.
go back to reference Rubinfeld, B., et al. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 272(5264), 1023–1026.PubMedCrossRef Rubinfeld, B., et al. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 272(5264), 1023–1026.PubMedCrossRef
43.
go back to reference Liu, C., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108(6), 837–847.PubMedCrossRef Liu, C., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108(6), 837–847.PubMedCrossRef
44.
go back to reference Behrens, J., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382(6592), 638–642.PubMedCrossRef Behrens, J., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382(6592), 638–642.PubMedCrossRef
45.
go back to reference He, T. C., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281(5382), 1509–1512.PubMedCrossRef He, T. C., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281(5382), 1509–1512.PubMedCrossRef
46.
go back to reference Shtutman, M., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(10), 5522–5527.PubMedPubMedCentralCrossRef Shtutman, M., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(10), 5522–5527.PubMedPubMedCentralCrossRef
47.
go back to reference Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726), 422–426.PubMedCrossRef Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726), 422–426.PubMedCrossRef
48.
go back to reference Yamamoto, Y., et al. (2003). Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology, 37(3), 528–533.PubMedCrossRef Yamamoto, Y., et al. (2003). Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology, 37(3), 528–533.PubMedCrossRef
49.
go back to reference Van der Flier, L. G., et al. (2007). The intestinal Wnt/TCF signature. Gastroenterology, 132(2), 628–632.PubMedCrossRef Van der Flier, L. G., et al. (2007). The intestinal Wnt/TCF signature. Gastroenterology, 132(2), 628–632.PubMedCrossRef
50.
go back to reference Fevr, T., et al. (2007). Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Molecular and Cellular Biology, 27(21), 7551–7559.PubMedPubMedCentralCrossRef Fevr, T., et al. (2007). Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Molecular and Cellular Biology, 27(21), 7551–7559.PubMedPubMedCentralCrossRef
51.
go back to reference Morin, P. J., Vogelstein, B., & Kinzler, K. W. (1996). Apoptosis and APC in colorectal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7950–7954.PubMedPubMedCentralCrossRef Morin, P. J., Vogelstein, B., & Kinzler, K. W. (1996). Apoptosis and APC in colorectal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7950–7954.PubMedPubMedCentralCrossRef
52.
go back to reference Chandra, S. H., et al. (2012). A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One, 7(4), e34479.PubMedCrossRef Chandra, S. H., et al. (2012). A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One, 7(4), e34479.PubMedCrossRef
53.
go back to reference Sansom, O. J., et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & Development, 18(12), 1385–1390.CrossRef Sansom, O. J., et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & Development, 18(12), 1385–1390.CrossRef
54.
go back to reference Dow, L. E., et al. (2015). Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell, 161(7), 1539–1552.PubMedPubMedCentralCrossRef Dow, L. E., et al. (2015). Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell, 161(7), 1539–1552.PubMedPubMedCentralCrossRef
55.
go back to reference Strater, J., et al. (1995). In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut, 37(6), 819–825.PubMedPubMedCentralCrossRef Strater, J., et al. (1995). In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut, 37(6), 819–825.PubMedPubMedCentralCrossRef
56.
go back to reference van de Wetering, M., et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 111(2), 241–250.PubMedCrossRef van de Wetering, M., et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 111(2), 241–250.PubMedCrossRef
57.
go back to reference Senda, T., et al. (2007). Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Medical Molecular Morphology, 40(2), 68–81.PubMedCrossRef Senda, T., et al. (2007). Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Medical Molecular Morphology, 40(2), 68–81.PubMedCrossRef
58.
go back to reference Korinek, V., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science, 275(5307), 1784–1787.PubMedCrossRef Korinek, V., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science, 275(5307), 1784–1787.PubMedCrossRef
59.
go back to reference Zhang, F., White, R. L., & Neufeld, K. L. (2000). Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12577–12582.PubMedPubMedCentralCrossRef Zhang, F., White, R. L., & Neufeld, K. L. (2000). Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12577–12582.PubMedPubMedCentralCrossRef
60.
go back to reference Galea, M. A., Eleftheriou, A., & Henderson, B. R. (2001). ARM domain-dependent nuclear import of adenomatous polyposis coli protein is stimulated by the B56 alpha subunit of protein phosphatase 2A. The Journal of Biological Chemistry, 276(49), 45833–45839.PubMedCrossRef Galea, M. A., Eleftheriou, A., & Henderson, B. R. (2001). ARM domain-dependent nuclear import of adenomatous polyposis coli protein is stimulated by the B56 alpha subunit of protein phosphatase 2A. The Journal of Biological Chemistry, 276(49), 45833–45839.PubMedCrossRef
61.
go back to reference Henderson, B. R. (2000). Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nature Cell Biology, 2(9), 653–660.PubMedCrossRef Henderson, B. R. (2000). Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nature Cell Biology, 2(9), 653–660.PubMedCrossRef
62.
go back to reference Neufeld, K. L., et al. (2000). APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Reports, 1(6), 519–523.PubMedPubMedCentralCrossRef Neufeld, K. L., et al. (2000). APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Reports, 1(6), 519–523.PubMedPubMedCentralCrossRef
63.
go back to reference Rosin-Arbesfeld, R., Townsley, F., & Bienz, M. (2000). The APC tumour suppressor has a nuclear export function. Nature, 406(6799), 1009–1012.PubMedCrossRef Rosin-Arbesfeld, R., Townsley, F., & Bienz, M. (2000). The APC tumour suppressor has a nuclear export function. Nature, 406(6799), 1009–1012.PubMedCrossRef
64.
go back to reference Rosin-Arbesfeld, R., et al. (2003). Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. The EMBO Journal, 22(5), 1101–1113.PubMedPubMedCentralCrossRef Rosin-Arbesfeld, R., et al. (2003). Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. The EMBO Journal, 22(5), 1101–1113.PubMedPubMedCentralCrossRef
65.
go back to reference Zhang, F., White, R. L., & Neufeld, K. L. (2001). Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Molecular and Cellular Biology, 21(23), 8143–8156.PubMedPubMedCentralCrossRef Zhang, F., White, R. L., & Neufeld, K. L. (2001). Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Molecular and Cellular Biology, 21(23), 8143–8156.PubMedPubMedCentralCrossRef
66.
go back to reference Fagman, H., et al. (2003). Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene, 22(38), 6013–6022.PubMedCrossRef Fagman, H., et al. (2003). Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene, 22(38), 6013–6022.PubMedCrossRef
67.
go back to reference Davies, J. R., et al. (2004). Potential link between the NIMA mitotic kinase and nuclear membrane fission during mitotic exit in Aspergillus nidulans. Eukaryotic Cell, 3(6), 1433–1444.PubMedPubMedCentralCrossRef Davies, J. R., et al. (2004). Potential link between the NIMA mitotic kinase and nuclear membrane fission during mitotic exit in Aspergillus nidulans. Eukaryotic Cell, 3(6), 1433–1444.PubMedPubMedCentralCrossRef
68.
go back to reference Sierra, J., et al. (2006). The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes & Development, 20(5), 586–600.CrossRef Sierra, J., et al. (2006). The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes & Development, 20(5), 586–600.CrossRef
69.
go back to reference Choi, S. H., et al. (2013). α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes & Development, 27(22), 2473–2488.CrossRef Choi, S. H., et al. (2013). α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes & Development, 27(22), 2473–2488.CrossRef
70.
go back to reference Hamada, F., & Bienz, M. (2004). The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Developmental Cell, 7(5), 677–685.PubMedCrossRef Hamada, F., & Bienz, M. (2004). The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Developmental Cell, 7(5), 677–685.PubMedCrossRef
71.
go back to reference Anderson, C. B., Neufeld, K. L., & White, R. L. (2002). Subcellular distribution of Wnt pathway proteins in normal and neoplastic colon. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8683–8688.PubMedPubMedCentralCrossRef Anderson, C. B., Neufeld, K. L., & White, R. L. (2002). Subcellular distribution of Wnt pathway proteins in normal and neoplastic colon. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8683–8688.PubMedPubMedCentralCrossRef
72.
go back to reference Kouzmenko, A. P., et al. (2008). Truncation mutations abolish chromatin-associated activities of adenomatous polyposis coli. Oncogene, 27(36), 4888–4899.PubMedCrossRef Kouzmenko, A. P., et al. (2008). Truncation mutations abolish chromatin-associated activities of adenomatous polyposis coli. Oncogene, 27(36), 4888–4899.PubMedCrossRef
73.
go back to reference Zeineldin, M., et al. (2012). A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression. Oncogene, 31(19), 2423–2437.PubMedCrossRef Zeineldin, M., et al. (2012). A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression. Oncogene, 31(19), 2423–2437.PubMedCrossRef
74.
go back to reference Goel, A., et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology, 132(1), 127–138.PubMedCrossRef Goel, A., et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology, 132(1), 127–138.PubMedCrossRef
75.
go back to reference Fodde, R., et al. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biology, 3(4), 433–438.PubMedCrossRef Fodde, R., et al. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biology, 3(4), 433–438.PubMedCrossRef
76.
go back to reference Kaplan, K. B., et al. (2001). A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nature Cell Biology, 3(4), 429–432.PubMedCrossRef Kaplan, K. B., et al. (2001). A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nature Cell Biology, 3(4), 429–432.PubMedCrossRef
77.
go back to reference Dikovskaya, D., et al. (2007). Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. The Journal of Cell Biology, 176(2), 183–195.PubMedPubMedCentralCrossRef Dikovskaya, D., et al. (2007). Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. The Journal of Cell Biology, 176(2), 183–195.PubMedPubMedCentralCrossRef
78.
go back to reference Green, R. A., Wollman, R., & Kaplan, K. B. (2005). APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Molecular Biology of the Cell, 16(10), 4609–4622.PubMedPubMedCentralCrossRef Green, R. A., Wollman, R., & Kaplan, K. B. (2005). APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Molecular Biology of the Cell, 16(10), 4609–4622.PubMedPubMedCentralCrossRef
79.
go back to reference Trzepacz, C., et al. (1997). Phosphorylation of the tumor suppressor adenomatous polyposis coli (APC) by the cyclin-dependent kinase p34. The Journal of Biological Chemistry, 272(35), 21681–21684.PubMedCrossRef Trzepacz, C., et al. (1997). Phosphorylation of the tumor suppressor adenomatous polyposis coli (APC) by the cyclin-dependent kinase p34. The Journal of Biological Chemistry, 272(35), 21681–21684.PubMedCrossRef
80.
go back to reference Green, R. A., & Kaplan, K. B. (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. The Journal of Cell Biology, 163(5), 949–961.PubMedPubMedCentralCrossRef Green, R. A., & Kaplan, K. B. (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. The Journal of Cell Biology, 163(5), 949–961.PubMedPubMedCentralCrossRef
81.
go back to reference Groden, J., et al. (1995). Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Research, 55(7), 1531–1539.PubMed Groden, J., et al. (1995). Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Research, 55(7), 1531–1539.PubMed
82.
go back to reference Baeg, G. H., et al. (1995). The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. The EMBO Journal, 14(22), 5618–5625.PubMedPubMedCentral Baeg, G. H., et al. (1995). The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. The EMBO Journal, 14(22), 5618–5625.PubMedPubMedCentral
83.
go back to reference Heinen, C. D., et al. (2002). The APC tumor suppressor controls entry into S-phase through its ability to regulate the cyclin D/RB pathway. Gastroenterology, 123(3), 751–763.PubMedCrossRef Heinen, C. D., et al. (2002). The APC tumor suppressor controls entry into S-phase through its ability to regulate the cyclin D/RB pathway. Gastroenterology, 123(3), 751–763.PubMedCrossRef
84.
go back to reference Ishidate, T., et al. (2000). The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene, 19(3), 365–372.PubMedCrossRef Ishidate, T., et al. (2000). The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene, 19(3), 365–372.PubMedCrossRef
85.
go back to reference Qian, J., et al. (2008). The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus. Gastroenterology, 135(1), 152–162.PubMedPubMedCentralCrossRef Qian, J., et al. (2008). The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus. Gastroenterology, 135(1), 152–162.PubMedPubMedCentralCrossRef
86.
go back to reference Brocardo, M. G., Borowiec, J. A., & Henderson, B. R. (2011). Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. The International Journal of Biochemistry & Cell Biology, 43(9), 1354–1364.CrossRef Brocardo, M. G., Borowiec, J. A., & Henderson, B. R. (2011). Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. The International Journal of Biochemistry & Cell Biology, 43(9), 1354–1364.CrossRef
87.
go back to reference Zhang, Y., et al. (2009). Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nature Chemical Biology, 5(4), 217–219.PubMedCrossRef Zhang, Y., et al. (2009). Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nature Chemical Biology, 5(4), 217–219.PubMedCrossRef
88.
go back to reference Zhang, T., et al. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61(24), 8664–8667.PubMed Zhang, T., et al. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61(24), 8664–8667.PubMed
89.
go back to reference Steigerwald, K., et al. (2005). The APC tumor suppressor promotes transcription-independent apoptosis in vitro. Molecular Cancer Research, 3(2), 78–89.PubMedCrossRef Steigerwald, K., et al. (2005). The APC tumor suppressor promotes transcription-independent apoptosis in vitro. Molecular Cancer Research, 3(2), 78–89.PubMedCrossRef
90.
go back to reference Qian, J., et al. (2007). Caspase cleavage of the APC tumor suppressor and release of an amino-terminal domain is required for the transcription-independent function of APC in apoptosis. Oncogene, 26(33), 4872–4876.PubMedCrossRef Qian, J., et al. (2007). Caspase cleavage of the APC tumor suppressor and release of an amino-terminal domain is required for the transcription-independent function of APC in apoptosis. Oncogene, 26(33), 4872–4876.PubMedCrossRef
91.
go back to reference Qian, J., et al. (2010). The mitochondrial protein hTID-1 partners with the caspase-cleaved adenomatous polyposis cell tumor suppressor to facilitate apoptosis. Gastroenterology, 138(4), 1418–1428.PubMedCrossRef Qian, J., et al. (2010). The mitochondrial protein hTID-1 partners with the caspase-cleaved adenomatous polyposis cell tumor suppressor to facilitate apoptosis. Gastroenterology, 138(4), 1418–1428.PubMedCrossRef
92.
go back to reference Brocardo, M., et al. (2008). Mitochondrial targeting of adenomatous polyposis coli protein is stimulated by truncating cancer mutations: regulation of Bcl-2 and implications for cell survival. The Journal of Biological Chemistry, 283(9), 5950–5959.PubMedCrossRef Brocardo, M., et al. (2008). Mitochondrial targeting of adenomatous polyposis coli protein is stimulated by truncating cancer mutations: regulation of Bcl-2 and implications for cell survival. The Journal of Biological Chemistry, 283(9), 5950–5959.PubMedCrossRef
93.
go back to reference Andreu, P., et al. (2005). Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development, 132(6), 1443–1451.PubMedCrossRef Andreu, P., et al. (2005). Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development, 132(6), 1443–1451.PubMedCrossRef
94.
go back to reference Korinek, V., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.PubMedCrossRef Korinek, V., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.PubMedCrossRef
95.
go back to reference Barker, N., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef Barker, N., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef
96.
go back to reference Nadauld, L. D., et al. (2004). Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation. The Journal of Biological Chemistry, 279(49), 51581–51589.PubMedCrossRef Nadauld, L. D., et al. (2004). Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation. The Journal of Biological Chemistry, 279(49), 51581–51589.PubMedCrossRef
97.
go back to reference Nadauld, L. D., et al. (2006). Adenomatous polyposis coli control of C-terminal binding protein-1 stability regulates expression of intestinal retinol dehydrogenases. The Journal of Biological Chemistry, 281(49), 37828–37835.PubMedCrossRef Nadauld, L. D., et al. (2006). Adenomatous polyposis coli control of C-terminal binding protein-1 stability regulates expression of intestinal retinol dehydrogenases. The Journal of Biological Chemistry, 281(49), 37828–37835.PubMedCrossRef
98.
go back to reference Nadauld, L. D., et al. (2005). The zebrafish retinol dehydrogenase, rdh1l, is essential for intestinal development and is regulated by the tumor suppressor adenomatous polyposis coli. The Journal of Biological Chemistry, 280(34), 30490–30495.PubMedCrossRef Nadauld, L. D., et al. (2005). The zebrafish retinol dehydrogenase, rdh1l, is essential for intestinal development and is regulated by the tumor suppressor adenomatous polyposis coli. The Journal of Biological Chemistry, 280(34), 30490–30495.PubMedCrossRef
99.
go back to reference Jette, C., et al. (2004). The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. The Journal of Biological Chemistry, 279(33), 34397–34405.PubMedCrossRef Jette, C., et al. (2004). The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. The Journal of Biological Chemistry, 279(33), 34397–34405.PubMedCrossRef
100.
go back to reference Sandoval, I. T., et al. (2017). A metabolic switch controls intestinal differentiation downstream of adenomatous polyposis coli (APC). eLife, 6, e22706.PubMedPubMedCentralCrossRef Sandoval, I. T., et al. (2017). A metabolic switch controls intestinal differentiation downstream of adenomatous polyposis coli (APC). eLife, 6, e22706.PubMedPubMedCentralCrossRef
101.
go back to reference Cheng, H., & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. The American Journal of Anatomy, 141(4), 537–561.PubMedCrossRef Cheng, H., & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. The American Journal of Anatomy, 141(4), 537–561.PubMedCrossRef
102.
go back to reference Rosin-Arbesfeld, R., Ihrke, G., & Bienz, M. (2001). Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. The EMBO Journal, 20(21), 5929–5939.PubMedPubMedCentralCrossRef Rosin-Arbesfeld, R., Ihrke, G., & Bienz, M. (2001). Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. The EMBO Journal, 20(21), 5929–5939.PubMedPubMedCentralCrossRef
103.
go back to reference Kawasaki, Y., et al. (2000). Asef, a link between the tumor suppressor APC and G-protein signaling. Science, 289(5482), 1194–1197.PubMedCrossRef Kawasaki, Y., et al. (2000). Asef, a link between the tumor suppressor APC and G-protein signaling. Science, 289(5482), 1194–1197.PubMedCrossRef
104.
go back to reference Watanabe, T., et al. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Developmental Cell, 7(6), 871–883.PubMedCrossRef Watanabe, T., et al. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Developmental Cell, 7(6), 871–883.PubMedCrossRef
105.
go back to reference Sudhaharan, T., et al. (2011). Rho GTPase Cdc42 is a direct interacting partner of adenomatous polyposis coli protein and can alter its cellular localization. PLoS One, 6(2), e16603.PubMedPubMedCentralCrossRef Sudhaharan, T., et al. (2011). Rho GTPase Cdc42 is a direct interacting partner of adenomatous polyposis coli protein and can alter its cellular localization. PLoS One, 6(2), e16603.PubMedPubMedCentralCrossRef
106.
go back to reference Moseley, J. B., et al. (2007). Regulated binding of adenomatous polyposis coli protein to actin. The Journal of Biological Chemistry, 282(17), 12661–12668.PubMedCrossRef Moseley, J. B., et al. (2007). Regulated binding of adenomatous polyposis coli protein to actin. The Journal of Biological Chemistry, 282(17), 12661–12668.PubMedCrossRef
107.
go back to reference Okada, K., et al. (2010). Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. The Journal of Cell Biology, 189(7), 1087–1096.PubMedPubMedCentralCrossRef Okada, K., et al. (2010). Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. The Journal of Cell Biology, 189(7), 1087–1096.PubMedPubMedCentralCrossRef
108.
go back to reference Juanes, M. A., et al. (2017). Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. The Journal of Cell Biology, 216(9), 2859–2875.PubMed Juanes, M. A., et al. (2017). Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. The Journal of Cell Biology, 216(9), 2859–2875.PubMed
109.
go back to reference Aberle, H., Schwartz, H., & Kemler, R. (1996). Cadherin-catenin complex: Protein interactions and their implications for cadherin function. Journal of Cellular Biochemistry, 61(4), 514–523.PubMedCrossRef Aberle, H., Schwartz, H., & Kemler, R. (1996). Cadherin-catenin complex: Protein interactions and their implications for cadherin function. Journal of Cellular Biochemistry, 61(4), 514–523.PubMedCrossRef
110.
go back to reference Faux, M. C., et al. (2004). Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. Journal of Cell Science, 117(Pt 3), 427–439.PubMed Faux, M. C., et al. (2004). Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. Journal of Cell Science, 117(Pt 3), 427–439.PubMed
111.
go back to reference Hulsken, J., Birchmeier, W., & Behrens, J. (1994). E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. The Journal of Cell Biology, 127(6 Pt 2), 2061–2069.PubMedCrossRef Hulsken, J., Birchmeier, W., & Behrens, J. (1994). E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. The Journal of Cell Biology, 127(6 Pt 2), 2061–2069.PubMedCrossRef
112.
go back to reference Nelson, S. A., et al. (2012). Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. Disease Models & Mechanisms, 5(6), 940–947.CrossRef Nelson, S. A., et al. (2012). Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. Disease Models & Mechanisms, 5(6), 940–947.CrossRef
113.
go back to reference Matsumine, A., et al. (1996). Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science, 272(5264), 1020–1023.PubMedCrossRef Matsumine, A., et al. (1996). Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science, 272(5264), 1020–1023.PubMedCrossRef
114.
go back to reference Takizawa, S., et al. (2006). Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. Genes to Cells, 11(4), 453–464.PubMedCrossRef Takizawa, S., et al. (2006). Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. Genes to Cells, 11(4), 453–464.PubMedCrossRef
115.
go back to reference Nathke, I. S., et al. (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. The Journal of Cell Biology, 134(1), 165–179.PubMedCrossRef Nathke, I. S., et al. (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. The Journal of Cell Biology, 134(1), 165–179.PubMedCrossRef
116.
go back to reference Munemitsu, S., et al. (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Research, 54(14), 3676–3681.PubMed Munemitsu, S., et al. (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Research, 54(14), 3676–3681.PubMed
117.
go back to reference Zumbrunn, J., et al. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Current Biology, 11(1), 44–49.PubMedCrossRef Zumbrunn, J., et al. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Current Biology, 11(1), 44–49.PubMedCrossRef
118.
go back to reference Mogensen, M. M., et al. (2002). The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. The Journal of Cell Biology, 157(6), 1041–1048.PubMedPubMedCentralCrossRef Mogensen, M. M., et al. (2002). The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. The Journal of Cell Biology, 157(6), 1041–1048.PubMedPubMedCentralCrossRef
119.
go back to reference Su, L. K., et al. (1995). APC binds to the novel protein EB1. Cancer Research, 55(14), 2972–2977.PubMed Su, L. K., et al. (1995). APC binds to the novel protein EB1. Cancer Research, 55(14), 2972–2977.PubMed
120.
go back to reference Iizuka-Kogo, A., Shimomura, A., & Senda, T. (2005). Colocalization of APC and DLG at the tips of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons. Histochemistry and Cell Biology, 123(1), 67–73.PubMedCrossRef Iizuka-Kogo, A., Shimomura, A., & Senda, T. (2005). Colocalization of APC and DLG at the tips of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons. Histochemistry and Cell Biology, 123(1), 67–73.PubMedCrossRef
121.
go back to reference Kroboth, K., et al. (2007). Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Molecular Biology of the Cell, 18(3), 910–918.PubMedPubMedCentralCrossRef Kroboth, K., et al. (2007). Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Molecular Biology of the Cell, 18(3), 910–918.PubMedPubMedCentralCrossRef
122.
go back to reference Mili, S., Moissoglu, K., & Macara, I. G. (2008). Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature, 453(7191), 115–119.PubMedPubMedCentralCrossRef Mili, S., Moissoglu, K., & Macara, I. G. (2008). Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature, 453(7191), 115–119.PubMedPubMedCentralCrossRef
123.
go back to reference Marshall, T. W., et al. (2011). The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium. Molecular Biology of the Cell, 22(21), 3962–3970.PubMedPubMedCentralCrossRef Marshall, T. W., et al. (2011). The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium. Molecular Biology of the Cell, 22(21), 3962–3970.PubMedPubMedCentralCrossRef
124.
go back to reference Bellis, J., et al. (2012). The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. The Journal of Cell Biology, 198(3), 331–341.PubMedPubMedCentralCrossRef Bellis, J., et al. (2012). The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. The Journal of Cell Biology, 198(3), 331–341.PubMedPubMedCentralCrossRef
125.
go back to reference Mahmoud, N. N., et al. (1997). Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Research, 57(22), 5045–5050.PubMed Mahmoud, N. N., et al. (1997). Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Research, 57(22), 5045–5050.PubMed
126.
go back to reference Wong, M. H., et al. (1996). Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9588–9593.PubMedPubMedCentralCrossRef Wong, M. H., et al. (1996). Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9588–9593.PubMedPubMedCentralCrossRef
127.
go back to reference Kim, K. P., et al. (2017). Paired primary and metastatic tumor analysis of somatic mutations in synchronous and metachronous colorectal cancer. Cancer Research and Treatment, 49(1), 161–167.PubMedCrossRef Kim, K. P., et al. (2017). Paired primary and metastatic tumor analysis of somatic mutations in synchronous and metachronous colorectal cancer. Cancer Research and Treatment, 49(1), 161–167.PubMedCrossRef
128.
go back to reference Leung, M. L., et al. (2017). Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Research, 27(8), 1287–1299.PubMedPubMedCentralCrossRef Leung, M. L., et al. (2017). Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Research, 27(8), 1287–1299.PubMedPubMedCentralCrossRef
129.
go back to reference Brabletz, T., et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10356–10361.PubMedPubMedCentralCrossRef Brabletz, T., et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10356–10361.PubMedPubMedCentralCrossRef
130.
go back to reference Bracke, M. E., Van Roy, F. M., & Mareel, M. M. (1996). The E-cadherin/catenin complex in invasion and metastasis. Current Topics in Microbiology and Immunology, 213(Pt 1), 123–161.PubMed Bracke, M. E., Van Roy, F. M., & Mareel, M. M. (1996). The E-cadherin/catenin complex in invasion and metastasis. Current Topics in Microbiology and Immunology, 213(Pt 1), 123–161.PubMed
131.
132.
go back to reference Conacci-Sorrell, M., et al. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. The Journal of Cell Biology, 163(4), 847–857.PubMedPubMedCentralCrossRef Conacci-Sorrell, M., et al. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. The Journal of Cell Biology, 163(4), 847–857.PubMedPubMedCentralCrossRef
133.
go back to reference Gradl, D., Kuhl, M., & Wedlich, D. (1999). The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Molecular and Cellular Biology, 19(8), 5576–5587.PubMedPubMedCentralCrossRef Gradl, D., Kuhl, M., & Wedlich, D. (1999). The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Molecular and Cellular Biology, 19(8), 5576–5587.PubMedPubMedCentralCrossRef
134.
go back to reference Hlubek, F., et al. (2001). Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Research, 61(22), 8089–8093.PubMed Hlubek, F., et al. (2001). Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Research, 61(22), 8089–8093.PubMed
135.
go back to reference Crawford, H. C., et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene, 18(18), 2883–2891.PubMedCrossRef Crawford, H. C., et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene, 18(18), 2883–2891.PubMedCrossRef
136.
go back to reference Brabletz, T., et al. (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American Journal of Pathology, 155(4), 1033–1038.PubMedPubMedCentralCrossRef Brabletz, T., et al. (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American Journal of Pathology, 155(4), 1033–1038.PubMedPubMedCentralCrossRef
137.
go back to reference Takahashi, M., et al. (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene, 21(38), 5861–5867.PubMedCrossRef Takahashi, M., et al. (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene, 21(38), 5861–5867.PubMedCrossRef
138.
go back to reference Gavert, N., et al. (2007). Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Research, 67(16), 7703–7712.PubMedCrossRef Gavert, N., et al. (2007). Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Research, 67(16), 7703–7712.PubMedCrossRef
139.
go back to reference Mann, B., et al. (1999). Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1603–1608.PubMedPubMedCentralCrossRef Mann, B., et al. (1999). Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1603–1608.PubMedPubMedCentralCrossRef
140.
go back to reference Wielenga, V. J., et al. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. The American Journal of Pathology, 154(2), 515–523.PubMedPubMedCentralCrossRef Wielenga, V. J., et al. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. The American Journal of Pathology, 154(2), 515–523.PubMedPubMedCentralCrossRef
141.
go back to reference Conacci-Sorrell, M. E., et al. (2002). Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes & Development, 16(16), 2058–2072.CrossRef Conacci-Sorrell, M. E., et al. (2002). Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes & Development, 16(16), 2058–2072.CrossRef
142.
go back to reference Gavert, N., et al. (2005). L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. The Journal of Cell Biology, 168(4), 633–642.PubMedPubMedCentralCrossRef Gavert, N., et al. (2005). L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. The Journal of Cell Biology, 168(4), 633–642.PubMedPubMedCentralCrossRef
143.
go back to reference Batlle, E., et al. (2002). β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 111(2), 251–263.PubMedCrossRef Batlle, E., et al. (2002). β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 111(2), 251–263.PubMedCrossRef
144.
go back to reference Vignjevic, D., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef Vignjevic, D., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef
145.
go back to reference Hlubek, F., et al. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121(9), 1941–1948.PubMedCrossRef Hlubek, F., et al. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121(9), 1941–1948.PubMedCrossRef
146.
go back to reference Todaro, M., et al. (2014). CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell, 14(3), 342–356.PubMedCrossRef Todaro, M., et al. (2014). CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell, 14(3), 342–356.PubMedCrossRef
147.
go back to reference Zilberberg, A., Lahav, L., & Rosin-Arbesfeld, R. (2010). Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut, 59(4), 496–507.PubMedCrossRef Zilberberg, A., Lahav, L., & Rosin-Arbesfeld, R. (2010). Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut, 59(4), 496–507.PubMedCrossRef
148.
go back to reference Virmani, A. K., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7(7), 1998–2004.PubMed Virmani, A. K., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7(7), 1998–2004.PubMed
149.
go back to reference Macnab, S. A., et al. (2011). Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. International Journal of Oncology, 39(5), 1173–1181.PubMed Macnab, S. A., et al. (2011). Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. International Journal of Oncology, 39(5), 1173–1181.PubMed
150.
go back to reference Sansom, O. J., et al. (2007). Myc deletion rescues Apc deficiency in the small intestine. Nature, 446(7136), 676–679.PubMedCrossRef Sansom, O. J., et al. (2007). Myc deletion rescues Apc deficiency in the small intestine. Nature, 446(7136), 676–679.PubMedCrossRef
151.
go back to reference Reed, K. R., et al. (2008). B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18919–18923.PubMedPubMedCentralCrossRef Reed, K. R., et al. (2008). B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18919–18923.PubMedPubMedCentralCrossRef
152.
go back to reference Wilkins, J. A., & Sansom, O. J. (2008). C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Research, 68(13), 4963–4966.PubMedCrossRef Wilkins, J. A., & Sansom, O. J. (2008). C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Research, 68(13), 4963–4966.PubMedCrossRef
153.
go back to reference Schepers, A. G., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.PubMedCrossRef Schepers, A. G., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.PubMedCrossRef
154.
go back to reference Garber, K. (2009). Drugging the Wnt pathway: problems and progress. Journal of the National Cancer Institute, 101(8), 548–550.PubMedCrossRef Garber, K. (2009). Drugging the Wnt pathway: problems and progress. Journal of the National Cancer Institute, 101(8), 548–550.PubMedCrossRef
155.
go back to reference Shitashige, M., et al. (2010). Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Research, 70(12), 5024–5033.PubMedCrossRef Shitashige, M., et al. (2010). Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Research, 70(12), 5024–5033.PubMedCrossRef
156.
go back to reference Lu, B., et al. (2016). Wnt drug discovery: weaving through the screens, patents and clinical trials. Cancers (Basel), 8(9), 82.CrossRef Lu, B., et al. (2016). Wnt drug discovery: weaving through the screens, patents and clinical trials. Cancers (Basel), 8(9), 82.CrossRef
157.
go back to reference Vincan, E., & Barker, N. (2008). The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clinical & Experimental Metastasis, 25(6), 657–663.CrossRef Vincan, E., & Barker, N. (2008). The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clinical & Experimental Metastasis, 25(6), 657–663.CrossRef
158.
go back to reference Chen, B., et al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chemical Biology, 5(2), 100–107.PubMedPubMedCentralCrossRef Chen, B., et al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chemical Biology, 5(2), 100–107.PubMedPubMedCentralCrossRef
159.
go back to reference Voloshanenko, O., et al. (2013). Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nature Communications, 4, 2610.PubMedPubMedCentralCrossRef Voloshanenko, O., et al. (2013). Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nature Communications, 4, 2610.PubMedPubMedCentralCrossRef
160.
go back to reference Liu, J., et al. (2013). Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20224–20229.PubMedPubMedCentralCrossRef Liu, J., et al. (2013). Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20224–20229.PubMedPubMedCentralCrossRef
161.
go back to reference Madan, B., et al. (2016). Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene, 35(17), 2197–2207.PubMedCrossRef Madan, B., et al. (2016). Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene, 35(17), 2197–2207.PubMedCrossRef
162.
go back to reference Gurney, A., et al. (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11717–11722.PubMedPubMedCentralCrossRef Gurney, A., et al. (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11717–11722.PubMedPubMedCentralCrossRef
163.
go back to reference Fischer, M. M., et al. (2017). WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Science Advances, 3(6), e1700090.PubMedPubMedCentralCrossRef Fischer, M. M., et al. (2017). WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Science Advances, 3(6), e1700090.PubMedPubMedCentralCrossRef
164.
go back to reference Thorne, C. A., et al. (2010). Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature Chemical Biology, 6(11), 829–836.PubMedPubMedCentralCrossRef Thorne, C. A., et al. (2010). Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature Chemical Biology, 6(11), 829–836.PubMedPubMedCentralCrossRef
165.
go back to reference Huang, S. M., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 461(7264), 614–620.PubMedCrossRef Huang, S. M., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 461(7264), 614–620.PubMedCrossRef
166.
go back to reference Waaler, J., et al. (2012). A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Research, 72(11), 2822–2832.PubMedCrossRef Waaler, J., et al. (2012). A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Research, 72(11), 2822–2832.PubMedCrossRef
167.
go back to reference Lau, T., et al. (2013). A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Research, 73(10), 3132–3144.PubMedCrossRef Lau, T., et al. (2013). A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Research, 73(10), 3132–3144.PubMedCrossRef
168.
go back to reference Larriba, M. J., et al. (2011). Vitamin D receptor deficiency enhances Wnt/beta-catenin signaling and tumor burden in colon cancer. PLoS One, 6(8), e23524.PubMedPubMedCentralCrossRef Larriba, M. J., et al. (2011). Vitamin D receptor deficiency enhances Wnt/beta-catenin signaling and tumor burden in colon cancer. PLoS One, 6(8), e23524.PubMedPubMedCentralCrossRef
169.
go back to reference Palmer, H. G., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedPubMedCentralCrossRef Palmer, H. G., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedPubMedCentralCrossRef
170.
go back to reference Shah, S., et al. (2006). The molecular basis of vitamin D receptor and beta-catenin crossregulation. Molecular Cell, 21(6), 799–809.PubMedCrossRef Shah, S., et al. (2006). The molecular basis of vitamin D receptor and beta-catenin crossregulation. Molecular Cell, 21(6), 799–809.PubMedCrossRef
171.
go back to reference Lepourcelet, M., et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 5(1), 91–102.PubMedCrossRef Lepourcelet, M., et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 5(1), 91–102.PubMedCrossRef
172.
go back to reference Emami, K. H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12682–12687.PubMedPubMedCentralCrossRef Emami, K. H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12682–12687.PubMedPubMedCentralCrossRef
174.
go back to reference Shitashige, M., et al. (2008). Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology, 134(7), 1961–1971, 1971 e1–4. Shitashige, M., et al. (2008). Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology, 134(7), 1961–1971, 1971 e1–4.
176.
go back to reference Morton, J. P., Myant, K. B., & Sansom, O. J. (2011). A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle, 10(2), 173–175.PubMedCrossRef Morton, J. P., Myant, K. B., & Sansom, O. J. (2011). A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle, 10(2), 173–175.PubMedCrossRef
Metadata
Title
Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting
Authors
William Hankey
Wendy L. Frankel
Joanna Groden
Publication date
01-03-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9725-6

Other articles of this Issue 1/2018

Cancer and Metastasis Reviews 1/2018 Go to the issue

EditorialNotes

Preface

Announcement

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine