Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2015

01-03-2015 | Clinical

The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal

Authors: Maarten F. Bijlsma, Hanneke W. M. van Laarhoven

Published in: Cancer and Metastasis Reviews | Issue 1/2015

Login to get access

Abstract

A nearly universal feature of pancreatic ductal adenocarcinoma (PDAC) is an extensive presence of activated stroma. This stroma is thought to aid in various tumor-promoting processes and hampers response to therapy. Here, we aim to evaluate the evidence that supports this role of the stroma in PDAC with functional experiments in relevant models, discuss the clinical trials that have aimed to target the stroma in this disease, and examine recent work that explains why these clinical trials based on stroma-targeting strategies have thus far not achieved the expected success. We systematically searched PubMed through August 2014 with no restrictions to identify published peer-reviewed research articles assessing the effect of targeting the stroma on tumor growth or metastases in preclinical animal models. Five hundred and thirty articles were extracted of which 31 were included in the analysis. Unfortunately, due to the large variety in models and outcome measures, we could not perform a meta-analysis of our data. We find that despite an abundance of positive outcomes reported in previous studies on stroma targeting, a strong discrepancy exists with the outcomes of clinical trials and the more recent preclinical work that is in line with these trials. We explain the incongruities by the duration of stroma targeting and propose that chronic stroma targeting treatment is possibly detrimental in the treatment of this disease.
Literature
1.
go back to reference Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74, 2913–2921. doi:10.1158/0008-5472.CAN-14-0155.CrossRefPubMed Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74, 2913–2921. doi:10.​1158/​0008-5472.​CAN-14-0155.CrossRefPubMed
3.
go back to reference Oettle, H., Post, S., Neuhaus, P., Gellert, K., Langrehr, J., Ridwelski, K., Schramm, H., Fahlke, J., Zuelke, C., Burkart, C., Gutberlet, K., Kettner, E., Schmalenberg, H., Weigang-Koehler, K., Bechstein, W. O., Niedergethmann, M., Schmidt-Wolf, I., Roll, L., Doerken, B., & Riess, H. (2007). Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA, 297, 267–277. doi:10.1001/jama.297.3.267.CrossRefPubMed Oettle, H., Post, S., Neuhaus, P., Gellert, K., Langrehr, J., Ridwelski, K., Schramm, H., Fahlke, J., Zuelke, C., Burkart, C., Gutberlet, K., Kettner, E., Schmalenberg, H., Weigang-Koehler, K., Bechstein, W. O., Niedergethmann, M., Schmidt-Wolf, I., Roll, L., Doerken, B., & Riess, H. (2007). Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA, 297, 267–277. doi:10.​1001/​jama.​297.​3.​267.CrossRefPubMed
4.
go back to reference Neoptolemos, J. P., Stocken, D. D., Bassi, C., Ghaneh, P., Cunningham, D., Goldstein, D., Padbury, R., Moore, M. J., Gallinger, S., Mariette, C., Wente, M. N., Izbicki, J. R., Friess, H., Lerch, M. M., Dervenis, C., Olah, A., Butturini, G., Doi, R., Lind, P. A., Smith, D., Valle, J. W., Palmer, D. H., Buckels, J. A., Thompson, J., McKay, C. J., & Rawcliffe, C. L. (2010). Buchler MW (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA, 304, 1073–1081.CrossRefPubMed Neoptolemos, J. P., Stocken, D. D., Bassi, C., Ghaneh, P., Cunningham, D., Goldstein, D., Padbury, R., Moore, M. J., Gallinger, S., Mariette, C., Wente, M. N., Izbicki, J. R., Friess, H., Lerch, M. M., Dervenis, C., Olah, A., Butturini, G., Doi, R., Lind, P. A., Smith, D., Valle, J. W., Palmer, D. H., Buckels, J. A., Thompson, J., McKay, C. J., & Rawcliffe, C. L. (2010). Buchler MW (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA, 304, 1073–1081.CrossRefPubMed
5.
go back to reference Ueno, H., Kosuge, T., Matsuyama, Y., Yamamoto, J., Nakao, A., Egawa, S., Doi, R., Monden, M., Hatori, T., Tanaka, M., Shimada, M., & Kanemitsu, K. (2009). A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. British Journal of Cancer, 101, 908–915. doi:10.1038/sj.bjc.6605256.CrossRefPubMedPubMedCentral Ueno, H., Kosuge, T., Matsuyama, Y., Yamamoto, J., Nakao, A., Egawa, S., Doi, R., Monden, M., Hatori, T., Tanaka, M., Shimada, M., & Kanemitsu, K. (2009). A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. British Journal of Cancer, 101, 908–915. doi:10.​1038/​sj.​bjc.​6605256.CrossRefPubMedPubMedCentral
6.
go back to reference Burris, H. A., III, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., Cripps, M. C., Portenoy, R. K., Storniolo, A. M., Tarassoff, P., Nelson, R., Dorr, F. A., Stephens, C. D., & Von Hoff, D. D. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15, 2403–2413.PubMed Burris, H. A., III, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., Cripps, M. C., Portenoy, R. K., Storniolo, A. M., Tarassoff, P., Nelson, R., Dorr, F. A., Stephens, C. D., & Von Hoff, D. D. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15, 2403–2413.PubMed
7.
go back to reference Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., Au, H. J., Murawa, P., Walde, D., Wolff, R. A., Campos, D., Lim, R., Ding, K., Clark, G., Voskoglou-Nomikos, T., Ptasynski, M., & Parulekar, W. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966. doi:10.1200/JCO.2006.07.9525.CrossRefPubMed Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., Au, H. J., Murawa, P., Walde, D., Wolff, R. A., Campos, D., Lim, R., Ding, K., Clark, G., Voskoglou-Nomikos, T., Ptasynski, M., & Parulekar, W. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966. doi:10.​1200/​JCO.​2006.​07.​9525.CrossRefPubMed
8.
go back to reference Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., Adenis, A., Raoul, J. L., Gourgou-Bourgade, S., de la Fouchardiere, C., Bennouna, J., Bachet, J. B., Khemissa-Akouz, F., Pere-Verge, D., Delbaldo, C., Assenat, E., Chauffert, B., Michel, P., Montoto-Grillot, C., & Ducreux, M. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New English Journal Medicine, 364, 1817–825. doi:10.1056/NEJMoa1011923. 364.CrossRef Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., Adenis, A., Raoul, J. L., Gourgou-Bourgade, S., de la Fouchardiere, C., Bennouna, J., Bachet, J. B., Khemissa-Akouz, F., Pere-Verge, D., Delbaldo, C., Assenat, E., Chauffert, B., Michel, P., Montoto-Grillot, C., & Ducreux, M. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New English Journal Medicine, 364, 1817–825. doi:10.​1056/​NEJMoa1011923. 364.CrossRef
9.
go back to reference Van Laethem, J. L., Verslype, C., Iovanna, J. L., Michl, P., Conroy, T., Louvet, C., Hammel, P., Mitry, E., Ducreux, M., Maraculla, T., Uhl, W., Van, T. G., Bachet, J. B., Marechal, R., Hendlisz, A., Bali, M., Demetter, P., Ulrich, F., Aust, D., Luttges, J., Peeters, M., Mauer, M., Roth, A., Neoptolemos, J. P., & Lutz, M. (2012). ew strategies and designs in pancreatic cancer research: consensus guidelines report from a European expert panel. Annals of Oncology, 23, 570–576. doi:10.1093/annonc/mdr351.CrossRefPubMed Van Laethem, J. L., Verslype, C., Iovanna, J. L., Michl, P., Conroy, T., Louvet, C., Hammel, P., Mitry, E., Ducreux, M., Maraculla, T., Uhl, W., Van, T. G., Bachet, J. B., Marechal, R., Hendlisz, A., Bali, M., Demetter, P., Ulrich, F., Aust, D., Luttges, J., Peeters, M., Mauer, M., Roth, A., Neoptolemos, J. P., & Lutz, M. (2012). ew strategies and designs in pancreatic cancer research: consensus guidelines report from a European expert panel. Annals of Oncology, 23, 570–576. doi:10.​1093/​annonc/​mdr351.CrossRefPubMed
10.
go back to reference Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., Gray, J. W., Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., & Gray, J. W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine, 17(17), 500–503. doi:10.1038/nm.2344.CrossRefPubMedPubMedCentral Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., Gray, J. W., Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., & Gray, J. W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine, 17(17), 500–503. doi:10.​1038/​nm.​2344.CrossRefPubMedPubMedCentral
13.
go back to reference Wu, J., Jiao, Y., Dal, M. M., Maitra, A., de Wilde, R. F., Wood, L. D., Eshleman, J. R., Goggins, M. G., Wolfgang, C. L., Canto, M. I., Schulick, R. D., Edil, B. H., Choti, M. A., Adsay, V., Klimstra, D. S., Offerhaus, G. J., Klein, A. P., Kopelovich, L., Carter, H., Karchin, R., Allen, P. J., Schmidt, C. M., Naito, Y., Diaz, L. A., Jr., Kinzler, K. W., Papadopoulos, N., Hruban, R. H., & Vogelstein, B. (2011). Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 21188–21193. doi:10.1073/pnas.1118046108.CrossRefPubMedPubMedCentral Wu, J., Jiao, Y., Dal, M. M., Maitra, A., de Wilde, R. F., Wood, L. D., Eshleman, J. R., Goggins, M. G., Wolfgang, C. L., Canto, M. I., Schulick, R. D., Edil, B. H., Choti, M. A., Adsay, V., Klimstra, D. S., Offerhaus, G. J., Klein, A. P., Kopelovich, L., Carter, H., Karchin, R., Allen, P. J., Schmidt, C. M., Naito, Y., Diaz, L. A., Jr., Kinzler, K. W., Papadopoulos, N., Hruban, R. H., & Vogelstein, B. (2011). Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 21188–21193. doi:10.​1073/​pnas.​1118046108.CrossRefPubMedPubMedCentral
16.
go back to reference Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., Miller, D. K., Wilson, P. J., Patch, A. M., Wu, J., Chang, D. K., Cowley, M. J., Gardiner, B. B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C. J., Gill, A. J., Pinho, A. V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J. L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R. S., Humphris, J. L., Kaplan, W., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chou, A., Chin, V. T., Chantrill, L. A., Mawson, A., Samra, J. S., Kench, J. G., Lovell, J. A., Daly, R. J., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Kakkar, N., Zhao, F., Wu, Y. Q., Wang, M., Muzny, D. M., Fisher, W. E., Brunicardi, F. C., Hodges, S. E., Reid, J. G., Drummond, J., Chang, K., Han, Y., Lewis, L. R., Dinh, H., Buhay, C. J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De, B. R., Denroche, R. E., Yung, C. K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M. S., Shaw, P. A., Petersen, G. M., Gallinger, S., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Schulick, R. D., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M. A., Mann, K. M., Jenkins, N. A., Perez-Mancera, P. A., Adams, D. J., Largaespada, D. A., Wessels, L. F., Rust, A. G., Stein, L. D., Tuveson, D. A., Copeland, N. G., Musgrove, E. A., Scarpa, A., Eshleman, J. R., Hudson, T. J., Sutherland, R. L., Wheeler, D. A., Pearson, J. V., McPherson, J. D., Gibbs, R. A., & Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491, 399–405. doi:10.1038/nature11547.CrossRefPubMedPubMedCentral Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., Miller, D. K., Wilson, P. J., Patch, A. M., Wu, J., Chang, D. K., Cowley, M. J., Gardiner, B. B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C. J., Gill, A. J., Pinho, A. V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J. L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R. S., Humphris, J. L., Kaplan, W., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chou, A., Chin, V. T., Chantrill, L. A., Mawson, A., Samra, J. S., Kench, J. G., Lovell, J. A., Daly, R. J., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Kakkar, N., Zhao, F., Wu, Y. Q., Wang, M., Muzny, D. M., Fisher, W. E., Brunicardi, F. C., Hodges, S. E., Reid, J. G., Drummond, J., Chang, K., Han, Y., Lewis, L. R., Dinh, H., Buhay, C. J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De, B. R., Denroche, R. E., Yung, C. K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M. S., Shaw, P. A., Petersen, G. M., Gallinger, S., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Schulick, R. D., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M. A., Mann, K. M., Jenkins, N. A., Perez-Mancera, P. A., Adams, D. J., Largaespada, D. A., Wessels, L. F., Rust, A. G., Stein, L. D., Tuveson, D. A., Copeland, N. G., Musgrove, E. A., Scarpa, A., Eshleman, J. R., Hudson, T. J., Sutherland, R. L., Wheeler, D. A., Pearson, J. V., McPherson, J. D., Gibbs, R. A., & Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491, 399–405. doi:10.​1038/​nature11547.CrossRefPubMedPubMedCentral
17.
go back to reference Collins, M. A., Bednar, F., Zhang, Y., Brisset, J. C., Galban, S., Galban, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & di Pasca, M. M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. Journal of Clinical Investigation, 122, 639–653. doi:10.1172/JCI59227.CrossRefPubMedPubMedCentral Collins, M. A., Bednar, F., Zhang, Y., Brisset, J. C., Galban, S., Galban, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & di Pasca, M. M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. Journal of Clinical Investigation, 122, 639–653. doi:10.​1172/​JCI59227.CrossRefPubMedPubMedCentral
18.
go back to reference Yachida, S., White, C. M., Naito, Y., Zhong, Y., Brosnan, J. A., Macgregor-Das, A. M., Morgan, R. A., Saunders, T., Laheru, D. A., Herman, J. M., Hruban, R. H., Klein, A. P., Jones, S., Velculescu, V., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2012). Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clinical Cancer Research, 18, 6339–6347. doi:10.1158/1078-0432.CCR-12-1215.CrossRefPubMedPubMedCentral Yachida, S., White, C. M., Naito, Y., Zhong, Y., Brosnan, J. A., Macgregor-Das, A. M., Morgan, R. A., Saunders, T., Laheru, D. A., Herman, J. M., Hruban, R. H., Klein, A. P., Jones, S., Velculescu, V., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2012). Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clinical Cancer Research, 18, 6339–6347. doi:10.​1158/​1078-0432.​CCR-12-1215.CrossRefPubMedPubMedCentral
19.
go back to reference Donahue, T. R., Tran, L. M., Hill, R., Li, Y., Kovochich, A., Calvopina, J. H., Patel, S. G., Wu, N., Hindoyan, A., Farrell, J. J., Li, X., Dawson, D. W., & Wu, H. (2012). Integrative survival-based molecular profiling of human pancreatic cancer. Clinical Cancer Research, 18, 1352–1363. doi:10.1158/1078-0432.CCR-11-1539.CrossRefPubMed Donahue, T. R., Tran, L. M., Hill, R., Li, Y., Kovochich, A., Calvopina, J. H., Patel, S. G., Wu, N., Hindoyan, A., Farrell, J. J., Li, X., Dawson, D. W., & Wu, H. (2012). Integrative survival-based molecular profiling of human pancreatic cancer. Clinical Cancer Research, 18, 1352–1363. doi:10.​1158/​1078-0432.​CCR-11-1539.CrossRefPubMed
20.
go back to reference Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R. H., Eshleman, J. R., Nowak, M. A., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., & Iacobuzio-Donahue, C. A. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117. doi:10.1038/nature09515.CrossRefPubMedPubMedCentral Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R. H., Eshleman, J. R., Nowak, M. A., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., & Iacobuzio-Donahue, C. A. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117. doi:10.​1038/​nature09515.CrossRefPubMedPubMedCentral
21.
go back to reference Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806. doi:10.1126/science.1164368.CrossRefPubMedPubMedCentral Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806. doi:10.​1126/​science.​1164368.CrossRefPubMedPubMedCentral
22.
go back to reference Erkan, M., Reiser-Erkan, C., Michalski, C. W., Kong, B., Esposito, I., Friess, H., & Kleeff, J. (2012). The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Current Molecular Medicine, 12, 288–303.CrossRefPubMed Erkan, M., Reiser-Erkan, C., Michalski, C. W., Kong, B., Esposito, I., Friess, H., & Kleeff, J. (2012). The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Current Molecular Medicine, 12, 288–303.CrossRefPubMed
24.
go back to reference Erkan, M., Reiser-Erkan, C., Michalski, C. W., & Kleeff, J. (2010). Tumor microenvironment and progression of pancreatic cancer. Experimental Oncology, 32, 128–131.PubMed Erkan, M., Reiser-Erkan, C., Michalski, C. W., & Kleeff, J. (2010). Tumor microenvironment and progression of pancreatic cancer. Experimental Oncology, 32, 128–131.PubMed
25.
go back to reference Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., LeBleu, V. S., & Kalluri, R. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734. doi:10.1016/j.ccr.2014.04.005.CrossRefPubMedPubMedCentral Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., LeBleu, V. S., & Kalluri, R. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734. doi:10.​1016/​j.​ccr.​2014.​04.​005.CrossRefPubMedPubMedCentral
26.
go back to reference Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T., & Vu, V. T. (2009). Hypoxia and radiation therapy: past history, ongoing research, and future promise. Current Molecular Medicine, 9, 442–458.CrossRefPubMedPubMedCentral Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T., & Vu, V. T. (2009). Hypoxia and radiation therapy: past history, ongoing research, and future promise. Current Molecular Medicine, 9, 442–458.CrossRefPubMedPubMedCentral
27.
go back to reference Kleeff, J., Beckhove, P., Esposito, I., Herzig, S., Huber, P. E., Lohr, J. M., & Friess, H. (2007). Pancreatic cancer microenvironment. International Journal of Cancer, 121, 699–705. doi:10.1002/ijc.22871.CrossRefPubMed Kleeff, J., Beckhove, P., Esposito, I., Herzig, S., Huber, P. E., Lohr, J. M., & Friess, H. (2007). Pancreatic cancer microenvironment. International Journal of Cancer, 121, 699–705. doi:10.​1002/​ijc.​22871.CrossRefPubMed
28.
30.
go back to reference Erkan, M., Reiser-Erkan, C., Michalski, C. W., Deucker, S., Sauliunaite, D., Streit, S., Esposito, I., Friess, H., & Kleeff, J. (2009). Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 11, 497–508.CrossRefPubMedPubMedCentral Erkan, M., Reiser-Erkan, C., Michalski, C. W., Deucker, S., Sauliunaite, D., Streit, S., Esposito, I., Friess, H., & Kleeff, J. (2009). Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 11, 497–508.CrossRefPubMedPubMedCentral
31.
go back to reference Sparmann, G., Kruse, M. L., Hofmeister-Mielke, N., Koczan, D., Jaster, R., Liebe, S., Wolff, D., & Emmrich, J. (2010). Bone marrow-derived pancreatic stellate cells in rats. Cell Research, 20, 288–298. doi:10.1038/cr.2010.10.CrossRefPubMed Sparmann, G., Kruse, M. L., Hofmeister-Mielke, N., Koczan, D., Jaster, R., Liebe, S., Wolff, D., & Emmrich, J. (2010). Bone marrow-derived pancreatic stellate cells in rats. Cell Research, 20, 288–298. doi:10.​1038/​cr.​2010.​10.CrossRefPubMed
32.
go back to reference Akita, S., Kubota, K., Kobayashi, A., Misawa, R., Shimizu, A., Nakata, T., Yokoyama, T., Takahashi, M., & Miyagawa, S. (2012). Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochemical and Biophysical Research Communications, 420, 743–749. doi:10.1016/j.bbrc.2012.03.060.CrossRefPubMed Akita, S., Kubota, K., Kobayashi, A., Misawa, R., Shimizu, A., Nakata, T., Yokoyama, T., Takahashi, M., & Miyagawa, S. (2012). Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochemical and Biophysical Research Communications, 420, 743–749. doi:10.​1016/​j.​bbrc.​2012.​03.​060.CrossRefPubMed
33.
go back to reference Scarlett, C. J., Colvin, E. K., Pinese, M., Chang, D. K., Morey, A. L., Musgrove, E. A., Pajic, M., Apte, M., Henshall, S. M., Sutherland, R. L., Kench, J. G., & Biankin, A. V. (2011). Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. PloS One, 6, e26088. doi:10.1371/journal.pone.0026088.CrossRefPubMedPubMedCentral Scarlett, C. J., Colvin, E. K., Pinese, M., Chang, D. K., Morey, A. L., Musgrove, E. A., Pajic, M., Apte, M., Henshall, S. M., Sutherland, R. L., Kench, J. G., & Biankin, A. V. (2011). Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. PloS One, 6, e26088. doi:10.​1371/​journal.​pone.​0026088.CrossRefPubMedPubMedCentral
36.
go back to reference Kadaba, R., Birke, H., Wang, J., Hooper, S., Andl, C. D., Di, M. F., Soylu, E., Ghallab, M., Bor, D., Froeling, F. E., Bhattacharya, S., Rustgi, A. K., Sahai, E., Chelala, C., Sasieni, P., & Kocher, H. M. (2013). Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. Journal of Pathology, 230, 107–117. doi:10.1002/path.4172.CrossRefPubMedPubMedCentral Kadaba, R., Birke, H., Wang, J., Hooper, S., Andl, C. D., Di, M. F., Soylu, E., Ghallab, M., Bor, D., Froeling, F. E., Bhattacharya, S., Rustgi, A. K., Sahai, E., Chelala, C., Sasieni, P., & Kocher, H. M. (2013). Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. Journal of Pathology, 230, 107–117. doi:10.​1002/​path.​4172.CrossRefPubMedPubMedCentral
37.
go back to reference Coleman, S. J., Chioni, A. M., Ghallab, M., Anderson, R. K., Lemoine, N. R., Kocher, H. M., & Grose, R. P. (2014). Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Molecular Medicine, 6, 467–481. doi:10.1002/emmm.201302698.CrossRefPubMedPubMedCentral Coleman, S. J., Chioni, A. M., Ghallab, M., Anderson, R. K., Lemoine, N. R., Kocher, H. M., & Grose, R. P. (2014). Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Molecular Medicine, 6, 467–481. doi:10.​1002/​emmm.​201302698.CrossRefPubMedPubMedCentral
38.
go back to reference Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339, b2700.CrossRefPubMedPubMedCentral Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339, b2700.CrossRefPubMedPubMedCentral
39.
go back to reference Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., Qi, Y. P., Gysin, S., Fernandez-del, C. C., Yajnik, V., Antoniu, B., McMahon, M., Warshaw, A. L., & Hebrok, M. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425, 851–856. doi:10.1038/nature02009.CrossRefPubMedPubMedCentral Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., Qi, Y. P., Gysin, S., Fernandez-del, C. C., Yajnik, V., Antoniu, B., McMahon, M., Warshaw, A. L., & Hebrok, M. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425, 851–856. doi:10.​1038/​nature02009.CrossRefPubMedPubMedCentral
40.
go back to reference Heretsch, P., Tzagkaroulaki, L., & Giannis, A. (2010). Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angewandte Chemie International Edition in English, 49, 3418–3427. doi:10.1002/anie.200906967.CrossRef Heretsch, P., Tzagkaroulaki, L., & Giannis, A. (2010). Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angewandte Chemie International Edition in English, 49, 3418–3427. doi:10.​1002/​anie.​200906967.CrossRef
41.
go back to reference Ericson, J., Morton, S., Kawakami, A., Roelink, H., & Jessell, T. M. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 87, 661–673.CrossRefPubMed Ericson, J., Morton, S., Kawakami, A., Roelink, H., & Jessell, T. M. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 87, 661–673.CrossRefPubMed
43.
go back to reference Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., Madhu, B., Goldgraben, M. A., Caldwell, M. E., Allard, D., Frese, K. K., Denicola, G., Feig, C., Combs, C., Winter, S. P., Ireland-Zecchini, H., Reichelt, S., Howat, W. J., Chang, A., Dhara, M., Wang, L., Ruckert, F., Grutzmann, R., Pilarsky, C., Izeradjene, K., Hingorani, S. R., Huang, P., Davies, S. E., Plunkett, W., Egorin, M., Hruban, R. H., Whitebread, N., McGovern, K., Adams, J., Iacobuzio-Donahue, C., Griffiths, J., & Tuveson, D. A. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324, 1457–1461. doi:10.1126/science.1171362.CrossRefPubMedPubMedCentral Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., Madhu, B., Goldgraben, M. A., Caldwell, M. E., Allard, D., Frese, K. K., Denicola, G., Feig, C., Combs, C., Winter, S. P., Ireland-Zecchini, H., Reichelt, S., Howat, W. J., Chang, A., Dhara, M., Wang, L., Ruckert, F., Grutzmann, R., Pilarsky, C., Izeradjene, K., Hingorani, S. R., Huang, P., Davies, S. E., Plunkett, W., Egorin, M., Hruban, R. H., Whitebread, N., McGovern, K., Adams, J., Iacobuzio-Donahue, C., Griffiths, J., & Tuveson, D. A. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324, 1457–1461. doi:10.​1126/​science.​1171362.CrossRefPubMedPubMedCentral
44.
go back to reference Nakamura, K., Sasajima, J., Mizukami, Y., Sugiyama, Y., Yamazaki, M., Fujii, R., Kawamoto, T., Koizumi, K., Sato, K., Fujiya, M., Sasaki, K., Tanno, S., Okumura, T., Shimizu, N., Kawabe, J., Karasaki, H., Kono, T., Ii, M., Bardeesy, N., Chung, D. C., & Kohgo, Y. (2010). Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PloS One, 5, e8824. doi:10.1371/journal.pone.0008824.CrossRefPubMedPubMedCentral Nakamura, K., Sasajima, J., Mizukami, Y., Sugiyama, Y., Yamazaki, M., Fujii, R., Kawamoto, T., Koizumi, K., Sato, K., Fujiya, M., Sasaki, K., Tanno, S., Okumura, T., Shimizu, N., Kawabe, J., Karasaki, H., Kono, T., Ii, M., Bardeesy, N., Chung, D. C., & Kohgo, Y. (2010). Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PloS One, 5, e8824. doi:10.​1371/​journal.​pone.​0008824.CrossRefPubMedPubMedCentral
46.
go back to reference Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290. doi:10.4161/cc.19679.CrossRefPubMed Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290. doi:10.​4161/​cc.​19679.CrossRefPubMed
47.
go back to reference Kayed, H., Meyer, P., He, Y., Kraenzlin, B., Fink, C., Gretz, N., Schoenberg, S. O., & Sadick, M. (2012). Evaluation of the metabolic response to cyclopamine therapy in pancreatic cancer xenografts using a clinical PET-CT system. Translational Oncology, 5, 335–343.CrossRefPubMedPubMedCentral Kayed, H., Meyer, P., He, Y., Kraenzlin, B., Fink, C., Gretz, N., Schoenberg, S. O., & Sadick, M. (2012). Evaluation of the metabolic response to cyclopamine therapy in pancreatic cancer xenografts using a clinical PET-CT system. Translational Oncology, 5, 335–343.CrossRefPubMedPubMedCentral
48.
go back to reference Chang, Q., Foltz, W. D., Chaudary, N., Hill, R. P., & Hedley, D. W. (2013). Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. International Journal of Cancer, 133, 225–234. doi:10.1002/ijc.28006.CrossRefPubMed Chang, Q., Foltz, W. D., Chaudary, N., Hill, R. P., & Hedley, D. W. (2013). Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. International Journal of Cancer, 133, 225–234. doi:10.​1002/​ijc.​28006.CrossRefPubMed
49.
go back to reference Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V., Iglesias, J. L., Zhang, H., Soon-Shiong, P., Shi, T., Rajeshkumar, N. V., Maitra, A., & Hidalgo, M. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29, 4548–4554. doi:10.1200/JCO.2011.36.5742.CrossRef Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V., Iglesias, J. L., Zhang, H., Soon-Shiong, P., Shi, T., Rajeshkumar, N. V., Maitra, A., & Hidalgo, M. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29, 4548–4554. doi:10.​1200/​JCO.​2011.​36.​5742.CrossRef
50.
go back to reference Neesse, A., Frese, K. K., Chan, D. S., Bapiro, T. E., Howat, W. J., Richards, F. M., Ellenrieder, V., Jodrell, D. I., & Tuveson, D. A. (2014). SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut, 63, 974–983. doi:10.1136/gutjnl-2013-305559.CrossRefPubMedPubMedCentral Neesse, A., Frese, K. K., Chan, D. S., Bapiro, T. E., Howat, W. J., Richards, F. M., Ellenrieder, V., Jodrell, D. I., & Tuveson, D. A. (2014). SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut, 63, 974–983. doi:10.​1136/​gutjnl-2013-305559.CrossRefPubMedPubMedCentral
51.
go back to reference Alvarez, R., Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P. P., Megias, D., Guerra, C., Munoz, M., Quijano, Y., Cubillo, A., Rodriguez-Pascual, J., Plaza, C., de Vicente, E., Prados, S., Tabernero, S., Barbacid, M., Lopez-Rios, F., & Hidalgo, M. (2013). Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. British Journal of Cancer, 109, 926–933. doi:10.1038/bjc.2013.415.CrossRefPubMedPubMedCentral Alvarez, R., Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P. P., Megias, D., Guerra, C., Munoz, M., Quijano, Y., Cubillo, A., Rodriguez-Pascual, J., Plaza, C., de Vicente, E., Prados, S., Tabernero, S., Barbacid, M., Lopez-Rios, F., & Hidalgo, M. (2013). Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. British Journal of Cancer, 109, 926–933. doi:10.​1038/​bjc.​2013.​415.CrossRefPubMedPubMedCentral
52.
go back to reference Neesse, A., Frese, K. K., Bapiro, T. E., Nakagawa, T., Sternlicht, M. D., Seeley, T. W., Pilarsky, C., Jodrell, D. I., Spong, S. M., & Tuveson, D. A. (2013). CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 12325–12330. doi:10.1073/pnas.1300415110.CrossRefPubMedPubMedCentral Neesse, A., Frese, K. K., Bapiro, T. E., Nakagawa, T., Sternlicht, M. D., Seeley, T. W., Pilarsky, C., Jodrell, D. I., Spong, S. M., & Tuveson, D. A. (2013). CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 12325–12330. doi:10.​1073/​pnas.​1300415110.CrossRefPubMedPubMedCentral
54.
go back to reference Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., Feig, C., Nakagawa, T., Caldwell, M. E., Zecchini, H. I., Lolkema, M. P., Jiang, P., Kultti, A., Thompson, C. B., Maneval, D. C., Jodrell, D. I., Frost, G. I., Shepard, H. M., Skepper, J. N., & Tuveson, D. A. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120. doi:10.1136/gutjnl-2012-302529.CrossRefPubMedPubMedCentral Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., Feig, C., Nakagawa, T., Caldwell, M. E., Zecchini, H. I., Lolkema, M. P., Jiang, P., Kultti, A., Thompson, C. B., Maneval, D. C., Jodrell, D. I., Frost, G. I., Shepard, H. M., Skepper, J. N., & Tuveson, D. A. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120. doi:10.​1136/​gutjnl-2012-302529.CrossRefPubMedPubMedCentral
56.
go back to reference Hajime, M., Shuichi, Y., Makoto, N., Masanori, Y., Ikuko, K., Atsushi, K., Mutsuo, S., & Keiichi, T. (2007). Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. International Journal of Cancer, 120, 2704–2709. doi:10.1002/ijc.22349.CrossRefPubMed Hajime, M., Shuichi, Y., Makoto, N., Masanori, Y., Ikuko, K., Atsushi, K., Mutsuo, S., & Keiichi, T. (2007). Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. International Journal of Cancer, 120, 2704–2709. doi:10.​1002/​ijc.​22349.CrossRefPubMed
58.
59.
go back to reference Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America 104, 10.1073/pnas.0611660104 Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America 104, 10.​1073/​pnas.​0611660104
60.
go back to reference Medicherla, S., Li, L., Ma, J. Y., Kapoun, A. M., Gaspar, N. J., Liu, Y. W., Mangadu, R., O’Young, G., Protter, A. A., Schreiner, G. F., Wong, D. H., & Higgins, L. S. (2007). Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Research, 27, 4149–4157.PubMed Medicherla, S., Li, L., Ma, J. Y., Kapoun, A. M., Gaspar, N. J., Liu, Y. W., Mangadu, R., O’Young, G., Protter, A. A., Schreiner, G. F., Wong, D. H., & Higgins, L. S. (2007). Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Research, 27, 4149–4157.PubMed
61.
go back to reference Gore, A. J., Deitz, S. L., Palam, L. R., Craven, K. E., & Korc, M. (2014). Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. Journal of Clinical Investigation, 124, 338–352. doi:10.1172/JCI71526.CrossRefPubMedPubMedCentral Gore, A. J., Deitz, S. L., Palam, L. R., Craven, K. E., & Korc, M. (2014). Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. Journal of Clinical Investigation, 124, 338–352. doi:10.​1172/​JCI71526.CrossRefPubMedPubMedCentral
63.
go back to reference Masamune, A., Hamada, S., Kikuta, K., Takikawa, T., Miura, S., Nakano, E., & Shimosegawa, T. (2013). The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scandinavian Journal of Gastroenterology, 48, 602–609. doi:10.3109/00365521.2013.777776.CrossRefPubMed Masamune, A., Hamada, S., Kikuta, K., Takikawa, T., Miura, S., Nakano, E., & Shimosegawa, T. (2013). The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scandinavian Journal of Gastroenterology, 48, 602–609. doi:10.​3109/​00365521.​2013.​777776.CrossRefPubMed
64.
go back to reference Raykov, Z., Grekova, S. P., Bour, G., Lehn, J. M., Giese, N. A., Nicolau, C., & Aprahamian, M. (2014). Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. International Journal of Cancer, 134, 2572–2582. doi:10.1002/ijc.28597.CrossRefPubMed Raykov, Z., Grekova, S. P., Bour, G., Lehn, J. M., Giese, N. A., Nicolau, C., & Aprahamian, M. (2014). Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. International Journal of Cancer, 134, 2572–2582. doi:10.​1002/​ijc.​28597.CrossRefPubMed
65.
go back to reference Martinez-Bosch, N., Fernandez-Barrena, M. G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Gabius, H. J., Hwang, R. F., Poirier, F., Navas, C., Guerra, C., Fernandez-Zapico, M. E., & Navarro, P. (2014). Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Research, 74, 3512–3524. doi:10.1158/0008-5472.CAN-13-3013.CrossRefPubMedPubMedCentral Martinez-Bosch, N., Fernandez-Barrena, M. G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Gabius, H. J., Hwang, R. F., Poirier, F., Navas, C., Guerra, C., Fernandez-Zapico, M. E., & Navarro, P. (2014). Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Research, 74, 3512–3524. doi:10.​1158/​0008-5472.​CAN-13-3013.CrossRefPubMedPubMedCentral
66.
go back to reference Feig, C., Jones, J. O., Kraman, M., Wells, R. J., Deonarine, A., Chan, D. S., Connell, C. M., Roberts, E. W., Zhao, Q., Caballero, O. L., Teichmann, S. A., Janowitz, T., Jodrell, D. I., Tuveson, D. A., & Fearon, D. T. (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 20212–20217. doi:10.1073/pnas.1320318110.CrossRefPubMedPubMedCentral Feig, C., Jones, J. O., Kraman, M., Wells, R. J., Deonarine, A., Chan, D. S., Connell, C. M., Roberts, E. W., Zhao, Q., Caballero, O. L., Teichmann, S. A., Janowitz, T., Jodrell, D. I., Tuveson, D. A., & Fearon, D. T. (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 20212–20217. doi:10.​1073/​pnas.​1320318110.CrossRefPubMedPubMedCentral
67.
go back to reference Ijichi, H., Chytil, A., Gorska, A. E., Aakre, M. E., Bierie, B., Tada, M., Mohri, D., Miyabayashi, K., Asaoka, Y., Maeda, S., Ikenoue, T., Tateishi, K., Wright, C. V., Koike, K., Omata, M., & Moses, H. L. (2011). Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. Journal of Clinical Investigation, 121, 4106–4117. doi:10.1172/JCI42754.CrossRefPubMedPubMedCentral Ijichi, H., Chytil, A., Gorska, A. E., Aakre, M. E., Bierie, B., Tada, M., Mohri, D., Miyabayashi, K., Asaoka, Y., Maeda, S., Ikenoue, T., Tateishi, K., Wright, C. V., Koike, K., Omata, M., & Moses, H. L. (2011). Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. Journal of Clinical Investigation, 121, 4106–4117. doi:10.​1172/​JCI42754.CrossRefPubMedPubMedCentral
69.
go back to reference Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., Dekleva, E. N., Saunders, T., Becerra, C. P., Tattersall, I. W., Westphalen, C. B., Kitajewski, J., Fernandez-Barrena, M. G., Fernandez-Zapico, M. E., Iacobuzio-Donahue, C., Olive, K. P., & Stanger, B. Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747. doi:10.1016/j.ccr.2014.04.021.CrossRefPubMedPubMedCentral Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., Dekleva, E. N., Saunders, T., Becerra, C. P., Tattersall, I. W., Westphalen, C. B., Kitajewski, J., Fernandez-Barrena, M. G., Fernandez-Zapico, M. E., Iacobuzio-Donahue, C., Olive, K. P., & Stanger, B. Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747. doi:10.​1016/​j.​ccr.​2014.​04.​021.CrossRefPubMedPubMedCentral
70.
go back to reference Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, Fitamant J, Jones PD, Ghanta KS, Kawano S, Nagle JM, Deshpande V, Boucher Y, Kato T, Chen JK, Willmann JK, Bardeesy N, Beachy PA (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111, 10.1073/pnas.1411679111 Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, Fitamant J, Jones PD, Ghanta KS, Kawano S, Nagle JM, Deshpande V, Boucher Y, Kato T, Chen JK, Willmann JK, Bardeesy N, Beachy PA (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111, 10.​1073/​pnas.​1411679111
71.
go back to reference Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., Seay, T., Tjulandin, S. A., Ma, W. W., Saleh, M. N., Harris, M., Reni, M., Dowden, S., Laheru, D., Bahary, N., Ramanathan, R. K., Tabernero, J., Hidalgo, M., Goldstein, D., Van, C. E., Wei, X., Iglesias, J., & Renschler, M. F. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine, 369, 1691–1703. doi:10.1056/NEJMoa1304369.CrossRef Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., Seay, T., Tjulandin, S. A., Ma, W. W., Saleh, M. N., Harris, M., Reni, M., Dowden, S., Laheru, D., Bahary, N., Ramanathan, R. K., Tabernero, J., Hidalgo, M., Goldstein, D., Van, C. E., Wei, X., Iglesias, J., & Renschler, M. F. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine, 369, 1691–1703. doi:10.​1056/​NEJMoa1304369.CrossRef
72.
go back to reference Goldstein, D., El Maraghi, R. H., Hammel, P., Heinemann, V., Kunzmann, V., Sastre, J., Scheithauer, W., Siena, S., Tabernero, J., Teixeira, L., Tortora, G., Van Laethem, J. L., Young, R., Wei, X., Lu, B., Romano, A., & Von Hoff, D. D. (2014). Updated survival from a randomized phase III trial (MPACT) of nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients (pts) with metastatic adenocarcinoma of the pancreas. Journal of Clinical Oncology Meeting Abstracts, 32, 178. Goldstein, D., El Maraghi, R. H., Hammel, P., Heinemann, V., Kunzmann, V., Sastre, J., Scheithauer, W., Siena, S., Tabernero, J., Teixeira, L., Tortora, G., Van Laethem, J. L., Young, R., Wei, X., Lu, B., Romano, A., & Von Hoff, D. D. (2014). Updated survival from a randomized phase III trial (MPACT) of nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients (pts) with metastatic adenocarcinoma of the pancreas. Journal of Clinical Oncology Meeting Abstracts, 32, 178.
73.
74.
go back to reference Catenacci, D. V. T., Bahari, N., Edelman, M. J., Nattam, S. R., de Wilton, M. R., Kaubisch, A., Wallace, J. A., Cohen, D. J., Stiff, P. J., Sleckman, B. G., Thomas, S. P., Lenz, H. J., Henderson, L., Zagaya, C., Vannier, M., Karrison, T., Stadler, W. M., & Kindler, H. L. (2012). A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): Interim analysis of a University of Chicago phase II consortium study. Journal of Clinical Oncology Meeting Abstracts, 30, 4022. Catenacci, D. V. T., Bahari, N., Edelman, M. J., Nattam, S. R., de Wilton, M. R., Kaubisch, A., Wallace, J. A., Cohen, D. J., Stiff, P. J., Sleckman, B. G., Thomas, S. P., Lenz, H. J., Henderson, L., Zagaya, C., Vannier, M., Karrison, T., Stadler, W. M., & Kindler, H. L. (2012). A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): Interim analysis of a University of Chicago phase II consortium study. Journal of Clinical Oncology Meeting Abstracts, 30, 4022.
75.
go back to reference Richards, D. A., Stephenson, J., Wolpin, B. M., Becerra, C., Hamm, J. T., Messersmith, W. A., Devens, S., Cushing, J., Schmalbach, T., & Fuchs, C. S. (2012). A phase Ib trial of IPI-926, a hedgehog pathway inhibitor, plus gemcitabine in patients with metastatic pancreatic cancer. Journal of Clinical Oncology Meeting Abstracts, 30, 213. Richards, D. A., Stephenson, J., Wolpin, B. M., Becerra, C., Hamm, J. T., Messersmith, W. A., Devens, S., Cushing, J., Schmalbach, T., & Fuchs, C. S. (2012). A phase Ib trial of IPI-926, a hedgehog pathway inhibitor, plus gemcitabine in patients with metastatic pancreatic cancer. Journal of Clinical Oncology Meeting Abstracts, 30, 213.
76.
go back to reference Palmer, S. R., Erlichman, C., Fernandez-Zapico, M., Qi, Y., Almada, L., McCleary-Wheeler, A., Borad, M. J., Molina, J. R., Grothey, H. C., Pitot, H. C., Jatoi, A., Northfelt, D. W., McWilliams, R., Okuno, H., Haluska, P., Kim, G. P., & Colon-Otero, G. (2011). Phase I trial erlotinib, gemcitabine, and the hedgehog inhibitor, GDC-0449. Journal of Clinical Oncology Meeting Abstracts, 29, 3092. Palmer, S. R., Erlichman, C., Fernandez-Zapico, M., Qi, Y., Almada, L., McCleary-Wheeler, A., Borad, M. J., Molina, J. R., Grothey, H. C., Pitot, H. C., Jatoi, A., Northfelt, D. W., McWilliams, R., Okuno, H., Haluska, P., Kim, G. P., & Colon-Otero, G. (2011). Phase I trial erlotinib, gemcitabine, and the hedgehog inhibitor, GDC-0449. Journal of Clinical Oncology Meeting Abstracts, 29, 3092.
77.
go back to reference De Jesus-Acosta, A., O’Dwyer, P. J., Ramanathan, R. K., Von Hoff, D. D., Maitra, A., Rasheed, Z., Zheng, L., Rajeshkumar, N. V., Le, D. T., Hoering, A., Bolejack, V., Yabuuchi, S., & Laheru, D. A. (2014). A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clinical Oncology Meeting Abstracts, 32, 257. De Jesus-Acosta, A., O’Dwyer, P. J., Ramanathan, R. K., Von Hoff, D. D., Maitra, A., Rasheed, Z., Zheng, L., Rajeshkumar, N. V., Le, D. T., Hoering, A., Bolejack, V., Yabuuchi, S., & Laheru, D. A. (2014). A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clinical Oncology Meeting Abstracts, 32, 257.
79.
80.
go back to reference Flaberg, E., Markasz, L., Petranyi, G., Stuber, G., Dicso, F., Alchihabi, N., Olah, E., Csizy, I., Jozsa, T., Andren, O., Johansson, J. E., Andersson, S. O., Klein, G., & Szekely, L. (2011). High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. International Journal of Cancer, 128, 2793–2802. doi:10.1002/ijc.25612.CrossRefPubMed Flaberg, E., Markasz, L., Petranyi, G., Stuber, G., Dicso, F., Alchihabi, N., Olah, E., Csizy, I., Jozsa, T., Andren, O., Johansson, J. E., Andersson, S. O., Klein, G., & Szekely, L. (2011). High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. International Journal of Cancer, 128, 2793–2802. doi:10.​1002/​ijc.​25612.CrossRefPubMed
82.
go back to reference Harsha, H. C., Kandasamy, K., Ranganathan, P., Rani, S., Ramabadran, S., Gollapudi, S., Balakrishnan, L., Dwivedi, S. B., Telikicherla, D., Selvan, L. D., Goel, R., Mathivanan, S., Marimuthu, A., Kashyap, M., Vizza, R. F., Mayer, R. J., Decaprio, J. A., Srivastava, S., Hanash, S. M., Hruban, R. H., & Pandey, A. (2009). A compendium of potential biomarkers of pancreatic cancer. PLoS Medicine, 6, e1000046. doi:10.1371/journal.pmed.1000046.CrossRefPubMedPubMedCentral Harsha, H. C., Kandasamy, K., Ranganathan, P., Rani, S., Ramabadran, S., Gollapudi, S., Balakrishnan, L., Dwivedi, S. B., Telikicherla, D., Selvan, L. D., Goel, R., Mathivanan, S., Marimuthu, A., Kashyap, M., Vizza, R. F., Mayer, R. J., Decaprio, J. A., Srivastava, S., Hanash, S. M., Hruban, R. H., & Pandey, A. (2009). A compendium of potential biomarkers of pancreatic cancer. PLoS Medicine, 6, e1000046. doi:10.​1371/​journal.​pmed.​1000046.CrossRefPubMedPubMedCentral
84.
go back to reference Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., Zagorac, S., Alcala, S., Rodriguez-Arabaolaza, I., Ramirez, J. C., Torres-Ruiz, R., Garcia, E., Hidalgo, M., Cebrian, D. A., Heuchel, R., Lohr, M., Berger, F., Bartenstein, P., Aicher, A., & Heeschen, C. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9, 433–446. doi:10.1016/j.stem.2011.10.001.CrossRefPubMed Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., Zagorac, S., Alcala, S., Rodriguez-Arabaolaza, I., Ramirez, J. C., Torres-Ruiz, R., Garcia, E., Hidalgo, M., Cebrian, D. A., Heuchel, R., Lohr, M., Berger, F., Bartenstein, P., Aicher, A., & Heeschen, C. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9, 433–446. doi:10.​1016/​j.​stem.​2011.​10.​001.CrossRefPubMed
Metadata
Title
The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal
Authors
Maarten F. Bijlsma
Hanneke W. M. van Laarhoven
Publication date
01-03-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9541-1

Other articles of this Issue 1/2015

Cancer and Metastasis Reviews 1/2015 Go to the issue

Announcement

Biographies

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine