Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2013

01-12-2013

Chromosomal instability and transcriptome dynamics in cancer

Authors: Joshua B. Stevens, Steven D. Horne, Batoul Y. Abdallah, Christine J. Ye, Henry H. Heng

Published in: Cancer and Metastasis Reviews | Issue 3-4/2013

Login to get access

Abstract

Whole transcriptome profiling has long been proposed as a method of identifying cancer-specific gene expression profiles. Indeed, a multitude of these studies have generated vast amounts of expression data for many types of cancer, and most have identified specific gene signatures associated with a given cancer. These studies however, often contradict with each other, and gene lists only rarely overlap, challenging clinical application of cancer gene signatures. To understand this issue, the biological basis of transcriptome dynamics needs to be addressed. Chromosome instability (CIN) is the main contributor to genome heterogeneity and system dynamics, therefore the relationship between CIN, genome heterogeneity, and transcriptome dynamics has important implications for cancer research. In this review, we discuss CIN and its effects on the transcriptome during cancer progression, specifically how stochastic chromosome change results in transcriptome dynamics. This discussion is further applied to metastasis and drug resistance both of which have been linked to multiple diverse molecular mechanisms but are in fact driven by CIN. The diverse molecular mechanisms that drive each process are linked to karyotypic heterogeneity through the evolutionary mechanism of cancer. Karyotypic change and the resultant transcriptome change alter network function within cells increasing the evolutionary potential of the tumor. Future studies must embrace this instability-induced heterogeneity in order to devise new research and treatment modalities that focus on the evolutionary process of cancer rather than the individual genes that are uniquely changed in each tumor. Care is also needed in evaluating results from experimental systems which measure average values of a population.
Literature
1.
go back to reference Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–511.PubMedCrossRef Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–511.PubMedCrossRef
2.
go back to reference Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.PubMedCrossRef Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.PubMedCrossRef
3.
go back to reference Rimm, D. L. (2000). Molecular biology in cytopathology: current applications and future directions. Cancer, 90, 1–9.PubMedCrossRef Rimm, D. L. (2000). Molecular biology in cytopathology: current applications and future directions. Cancer, 90, 1–9.PubMedCrossRef
4.
go back to reference van't Veer, L. J., Dai, H. Y., van de Vijver, M. J., He, Y. D. D., Hart, A. A. M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530–536.CrossRef van't Veer, L. J., Dai, H. Y., van de Vijver, M. J., He, Y. D. D., Hart, A. A. M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530–536.CrossRef
5.
go back to reference Buyse, M., Loi, S., van't Veer, L., Viale, G., Delorenzi, M., et al. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Nat Cancer Inst, 98, 1183–1192.PubMedCrossRef Buyse, M., Loi, S., van't Veer, L., Viale, G., Delorenzi, M., et al. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Nat Cancer Inst, 98, 1183–1192.PubMedCrossRef
6.
go back to reference Lehmann, T., & Wrzesinski, T. (2012). The molecular basis of adrenocortical cancer. Cancer Genet, 205, 131–137.PubMedCrossRef Lehmann, T., & Wrzesinski, T. (2012). The molecular basis of adrenocortical cancer. Cancer Genet, 205, 131–137.PubMedCrossRef
7.
go back to reference Lucas, S. M., & Heath, E. I. (2012). Current challenges in development of differentially expressed and prognostic prostate cancer biomarkers. Prostate Cancer, 2012, 640968.PubMedCrossRef Lucas, S. M., & Heath, E. I. (2012). Current challenges in development of differentially expressed and prognostic prostate cancer biomarkers. Prostate Cancer, 2012, 640968.PubMedCrossRef
8.
go back to reference Simon, R., Radmacher, M. D., Dobbin, K., & McShane, L. M. (2003). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute, 95, 14–18.PubMedCrossRef Simon, R., Radmacher, M. D., Dobbin, K., & McShane, L. M. (2003). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute, 95, 14–18.PubMedCrossRef
9.
go back to reference Ein-Dor, L., Zuk, O., & Domany, E. (2006). Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences of the United States of America, 103, 5923–5928.PubMedCrossRef Ein-Dor, L., Zuk, O., & Domany, E. (2006). Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences of the United States of America, 103, 5923–5928.PubMedCrossRef
10.
go back to reference Venet, D., Dumont, J. E., & Detours, V. (2011). Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Computational Biology, 7, e1002240.PubMedCrossRef Venet, D., Dumont, J. E., & Detours, V. (2011). Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Computational Biology, 7, e1002240.PubMedCrossRef
12.
go back to reference Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489: 519–525. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489: 519–525.
13.
go back to reference Brock, A., Chang, H., & Huang, S. (2009). Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews Genetics, 10, 336–342.PubMedCrossRef Brock, A., Chang, H., & Huang, S. (2009). Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews Genetics, 10, 336–342.PubMedCrossRef
14.
go back to reference Yurov, Y. B., Iourov, I. Y., Monakhov, V. V., Soloviev, I. V., Vostrikov, V. M., et al. (2005). The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. Journal of Histochemistry and Cytochemistry, 53, 385–390.PubMedCrossRef Yurov, Y. B., Iourov, I. Y., Monakhov, V. V., Soloviev, I. V., Vostrikov, V. M., et al. (2005). The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. Journal of Histochemistry and Cytochemistry, 53, 385–390.PubMedCrossRef
15.
go back to reference Heng, H. H. (2013). Biocomplexity: challenging reductionism. In J. P. Sturmberg & C. C. Martin (Eds.), Handbook on systems and complexity in health. London: Springer. Heng, H. H. (2013). Biocomplexity: challenging reductionism. In J. P. Sturmberg & C. C. Martin (Eds.), Handbook on systems and complexity in health. London: Springer.
16.
go back to reference Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.PubMedCrossRef Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.PubMedCrossRef
17.
go back to reference Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal Neurosci, 25, 2176–2180.CrossRef Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal Neurosci, 25, 2176–2180.CrossRef
18.
go back to reference Iourov, I. Y., Vorsanova, S. G., & Yurov, Y. B. (2008). Chromosomal mosaicism goes global. Molecular Cytogen, 1, 26.CrossRef Iourov, I. Y., Vorsanova, S. G., & Yurov, Y. B. (2008). Chromosomal mosaicism goes global. Molecular Cytogen, 1, 26.CrossRef
19.
go back to reference Stevens, J.B., Abdallah, B.Y., Horne, S.D., Liu, G., Bremer, S.W., et al. (2011). Genetic and epigenetic heterogeneity in cancer. encyclopedia of life sciences. New York: Wiley Stevens, J.B., Abdallah, B.Y., Horne, S.D., Liu, G., Bremer, S.W., et al. (2011). Genetic and epigenetic heterogeneity in cancer. encyclopedia of life sciences. New York: Wiley
20.
go back to reference Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.PubMedCrossRef Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.PubMedCrossRef
21.
go back to reference Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., et al. (2010). Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Current Drug Targets, 11, 1304–1316.PubMedCrossRef Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., et al. (2010). Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Current Drug Targets, 11, 1304–1316.PubMedCrossRef
22.
go back to reference Bielas, J. H., & Loeb, L. A. (2005). Quantification of random genomic mutations. Nature Methods, 2, 285–290.PubMedCrossRef Bielas, J. H., & Loeb, L. A. (2005). Quantification of random genomic mutations. Nature Methods, 2, 285–290.PubMedCrossRef
23.
go back to reference Gao, C., Furge, K., Koeman, J., Dykema, K., Su, Y., et al. (2007). Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proceedings of the National Academy of Sciences of the United States of America, 104, 8995–9000.PubMedCrossRef Gao, C., Furge, K., Koeman, J., Dykema, K., Su, Y., et al. (2007). Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proceedings of the National Academy of Sciences of the United States of America, 104, 8995–9000.PubMedCrossRef
24.
go back to reference Tsafrir, D., Bacolod, M., Selvanayagam, Z., Tsafrir, I., Shia, J., et al. (2006). Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Research, 66, 2129–2137.PubMedCrossRef Tsafrir, D., Bacolod, M., Selvanayagam, Z., Tsafrir, I., Shia, J., et al. (2006). Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Research, 66, 2129–2137.PubMedCrossRef
25.
go back to reference Cheng, L., Wang, P., Yang, S., Yang, Y., Zhang, Q., et al. (2012). Identification of genes with a correlation between copy number and expression in gastric cancer. BMC Medical Genomics, 5, 14.PubMedCrossRef Cheng, L., Wang, P., Yang, S., Yang, Y., Zhang, Q., et al. (2012). Identification of genes with a correlation between copy number and expression in gastric cancer. BMC Medical Genomics, 5, 14.PubMedCrossRef
26.
go back to reference Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., et al. (2011). Decoding the genome beyond sequencing: the new phase of genomic research. Genomics, 98, 242–252.PubMedCrossRef Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., et al. (2011). Decoding the genome beyond sequencing: the new phase of genomic research. Genomics, 98, 242–252.PubMedCrossRef
27.
go back to reference Heng, H. H., Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., et al. (2006). Stochastic cancer progression driven by non-clonal chromosome aberrations. Journal of Cellular Physiology, 208, 461–472.PubMedCrossRef Heng, H. H., Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., et al. (2006). Stochastic cancer progression driven by non-clonal chromosome aberrations. Journal of Cellular Physiology, 208, 461–472.PubMedCrossRef
28.
go back to reference Heng, H. H., Bremer, S. W., Stevens, J., Ye, K. J., Miller, F., et al. (2006). Cancer progression by non-clonal chromosome aberrations. Journal of Cellular Biochemistry, 98, 1424–1435.PubMedCrossRef Heng, H. H., Bremer, S. W., Stevens, J., Ye, K. J., Miller, F., et al. (2006). Cancer progression by non-clonal chromosome aberrations. Journal of Cellular Biochemistry, 98, 1424–1435.PubMedCrossRef
29.
go back to reference Creekmore, A. L., Silkworth, W. T., Cimini, D., Jensen, R. V., Roberts, P. C., et al. (2011). Changes in gene expression and cellular architecture in an ovarian cancer progression model. PloS One, 6, e17676.PubMedCrossRef Creekmore, A. L., Silkworth, W. T., Cimini, D., Jensen, R. V., Roberts, P. C., et al. (2011). Changes in gene expression and cellular architecture in an ovarian cancer progression model. PloS One, 6, e17676.PubMedCrossRef
30.
go back to reference Lawrenson, L. (2010). Tracking profiles of genomic instability in spontaneous transformation and tumorigenesis. Detroit: Wayne State University School of Medicine. Lawrenson, L. (2010). Tracking profiles of genomic instability in spontaneous transformation and tumorigenesis. Detroit: Wayne State University School of Medicine.
31.
go back to reference Okamura, K., Feuk, L., Marques-Bonet, T., Navarro, A., & Scherer, S. W. (2006). Frequent appearance of novel protein-coding sequences by frameshift translation. Genomics, 88, 690–697.PubMedCrossRef Okamura, K., Feuk, L., Marques-Bonet, T., Navarro, A., & Scherer, S. W. (2006). Frequent appearance of novel protein-coding sequences by frameshift translation. Genomics, 88, 690–697.PubMedCrossRef
32.
go back to reference Nicke, B., Bastien, J., Khanna, S. J., Warne, P. H., Cowling, V., et al. (2005). Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Molecular Cell, 20, 673–685.PubMedCrossRef Nicke, B., Bastien, J., Khanna, S. J., Warne, P. H., Cowling, V., et al. (2005). Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Molecular Cell, 20, 673–685.PubMedCrossRef
33.
go back to reference Roberts, P. C., Mottillo, E. P., Baxa, A. C., Heng, H. H., Doyon-Reale, N., et al. (2005). Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia, 7, 944–956.PubMedCrossRef Roberts, P. C., Mottillo, E. P., Baxa, A. C., Heng, H. H., Doyon-Reale, N., et al. (2005). Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia, 7, 944–956.PubMedCrossRef
34.
go back to reference Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedCrossRef Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedCrossRef
35.
go back to reference Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.PubMedCrossRef Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.PubMedCrossRef
36.
go back to reference Springer, M., Weissman, J. S., & Kirschner, M. W. (2010). A general lack of compensation for gene dosage in yeast. Mol Sys Biol, 6, 368. Springer, M., Weissman, J. S., & Kirschner, M. W. (2010). A general lack of compensation for gene dosage in yeast. Mol Sys Biol, 6, 368.
37.
go back to reference Sheltzer, J. M., Torres, E. M., Dunham, M. J., & Amon, A. (2012). Transcriptional consequences of aneuploidy. Proceedings of the National Academy of Sciences, 109, 12644–12649.CrossRef Sheltzer, J. M., Torres, E. M., Dunham, M. J., & Amon, A. (2012). Transcriptional consequences of aneuploidy. Proceedings of the National Academy of Sciences, 109, 12644–12649.CrossRef
38.
go back to reference FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.PubMedCrossRef FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.PubMedCrossRef
39.
go back to reference Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.PubMedCrossRef Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.PubMedCrossRef
40.
go back to reference Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.PubMedCrossRef Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.PubMedCrossRef
41.
go back to reference Kuijjer, M. L., Rydbeck, H., Kresse, S. H., Buddingh, E. P., Lid, A. B., et al. (2012). Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes, Chromosomes & Cancer, 51, 696–706.CrossRef Kuijjer, M. L., Rydbeck, H., Kresse, S. H., Buddingh, E. P., Lid, A. B., et al. (2012). Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes, Chromosomes & Cancer, 51, 696–706.CrossRef
42.
go back to reference Huang, S. (2009). Non-genetic heterogeneity of cells in development: more than just noise. Development, 136, 3853–3862.PubMedCrossRef Huang, S. (2009). Non-genetic heterogeneity of cells in development: more than just noise. Development, 136, 3853–3862.PubMedCrossRef
43.
go back to reference Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.PubMedCrossRef Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.PubMedCrossRef
44.
go back to reference Ye, C. J., Stevens, J. B., Liu, G., Bremer, S. W., Jaiswal, A. S., et al. (2009). Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. Journal of Cellular Physiology, 219, 288–300.PubMedCrossRef Ye, C. J., Stevens, J. B., Liu, G., Bremer, S. W., Jaiswal, A. S., et al. (2009). Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. Journal of Cellular Physiology, 219, 288–300.PubMedCrossRef
45.
go back to reference Mi, R., Pan, C., Bian, X., Song, L., Tian, W., et al. (2012). Fusion between tumor cells enhances melanoma metastatic potential. Journal of Cancer Research and Clinical Oncology, 138, 1651–1658.PubMedCrossRef Mi, R., Pan, C., Bian, X., Song, L., Tian, W., et al. (2012). Fusion between tumor cells enhances melanoma metastatic potential. Journal of Cancer Research and Clinical Oncology, 138, 1651–1658.PubMedCrossRef
46.
go back to reference Pinto, A. E., Silva, G. L., Pereira, T., Cabrera, R. A., Santos, J. R., et al. (2012). S-phase fraction and ploidy as predictive markers in primary disease and recurrence of papillary thyroid carcinoma. Clinical Endocrinology, 77, 302–309.PubMedCrossRef Pinto, A. E., Silva, G. L., Pereira, T., Cabrera, R. A., Santos, J. R., et al. (2012). S-phase fraction and ploidy as predictive markers in primary disease and recurrence of papillary thyroid carcinoma. Clinical Endocrinology, 77, 302–309.PubMedCrossRef
47.
go back to reference Jasmine, F., Rahaman, R., Dodsworth, C., Roy, S., Paul, R., et al. (2012). A genome-wide study of cytogenetic changes in colorectal cancer using snp microarrays: opportunities for future personalized treatment. PloS One, 7, e31968.PubMedCrossRef Jasmine, F., Rahaman, R., Dodsworth, C., Roy, S., Paul, R., et al. (2012). A genome-wide study of cytogenetic changes in colorectal cancer using snp microarrays: opportunities for future personalized treatment. PloS One, 7, e31968.PubMedCrossRef
48.
go back to reference Duesberg, P., Li, R., Fabarius, A., & Hehlmann, R. (2006). Aneuploidy and cancer: from correlation to causation. Contributions to Microbiology, 13, 16–44.PubMedCrossRef Duesberg, P., Li, R., Fabarius, A., & Hehlmann, R. (2006). Aneuploidy and cancer: from correlation to causation. Contributions to Microbiology, 13, 16–44.PubMedCrossRef
49.
go back to reference Braun, S., Auer, D., & Marth, C. (2009). The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Investigation, 27, 598–603.PubMedCrossRef Braun, S., Auer, D., & Marth, C. (2009). The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Investigation, 27, 598–603.PubMedCrossRef
50.
go back to reference Habermann, J. K., Paulsen, U., Roblick, U. J., Upender, M. B., McShane, L. M., et al. (2007). Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes, Chromosomes & Cancer, 46, 10–26.CrossRef Habermann, J. K., Paulsen, U., Roblick, U. J., Upender, M. B., McShane, L. M., et al. (2007). Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes, Chromosomes & Cancer, 46, 10–26.CrossRef
51.
go back to reference Lu, X., Lu, X., & Kang, Y. (2010). Organ-specific enhancement of metastasis by spontaneous ploidy duplication and cell size enlargement. Cell Research, 20, 1012–1022.PubMedCrossRef Lu, X., Lu, X., & Kang, Y. (2010). Organ-specific enhancement of metastasis by spontaneous ploidy duplication and cell size enlargement. Cell Research, 20, 1012–1022.PubMedCrossRef
52.
go back to reference Adeyinka, A., Kytola, S., Mertens, F., Pandis, N., & Larsson, C. (2000). Spectral karyotyping and chromosome banding studies of primary breast carcinomas and their lymph node metastases. International Journal of Molecular Medicine, 5, 235–240.PubMed Adeyinka, A., Kytola, S., Mertens, F., Pandis, N., & Larsson, C. (2000). Spectral karyotyping and chromosome banding studies of primary breast carcinomas and their lymph node metastases. International Journal of Molecular Medicine, 5, 235–240.PubMed
53.
go back to reference Popescu, N. C., & Zimonjic, D. B. (2002). Chromosome and gene alterations in breast cancer as markers for diagnosis and prognosis as well as pathogenetic targets for therapy. American Journal of Medical Genetics, 115, 142–149.PubMedCrossRef Popescu, N. C., & Zimonjic, D. B. (2002). Chromosome and gene alterations in breast cancer as markers for diagnosis and prognosis as well as pathogenetic targets for therapy. American Journal of Medical Genetics, 115, 142–149.PubMedCrossRef
54.
go back to reference Bieche, I., & Lidereau, R. (1995). Genetic alterations in breast-cancer. Genes, Chromosomes & Cancer, 14, 227–251.CrossRef Bieche, I., & Lidereau, R. (1995). Genetic alterations in breast-cancer. Genes, Chromosomes & Cancer, 14, 227–251.CrossRef
55.
go back to reference Goodison, S., Viars, C., & Urquidi, V. (2005). Molecular cytogenetic analysis of a human breast metastasis model: identification of phenotype-specific chromosomal rearrangements. Cancer Genetics and Cytogenetics, 156, 37–48.PubMedCrossRef Goodison, S., Viars, C., & Urquidi, V. (2005). Molecular cytogenetic analysis of a human breast metastasis model: identification of phenotype-specific chromosomal rearrangements. Cancer Genetics and Cytogenetics, 156, 37–48.PubMedCrossRef
56.
go back to reference Klein, C. A., Blankenstein, T. J., Schmidt-Kittler, O., Petronio, M., Polzer, B., et al. (2002). Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 360, 683–689.PubMedCrossRef Klein, C. A., Blankenstein, T. J., Schmidt-Kittler, O., Petronio, M., Polzer, B., et al. (2002). Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 360, 683–689.PubMedCrossRef
57.
go back to reference Malkhosyan, S., Yasuda, J., Soto, J. L., Sekiya, T., Yokota, J., et al. (1998). Molecular karyotype (amplotype) of metastatic colorectal cancer by unbiased arbitrarily primed PCR DNA fingerprinting. Proceedings of the National Academy of Sciences of the United States of America, 95, 10170–10175.PubMedCrossRef Malkhosyan, S., Yasuda, J., Soto, J. L., Sekiya, T., Yokota, J., et al. (1998). Molecular karyotype (amplotype) of metastatic colorectal cancer by unbiased arbitrarily primed PCR DNA fingerprinting. Proceedings of the National Academy of Sciences of the United States of America, 95, 10170–10175.PubMedCrossRef
58.
go back to reference Barbazan, J., Alonso-Alconada, L., Muinelo-Romay, L., Vieito, M., Abalo, A., et al. (2012). Molecular characterization of circulating tumor cells in human metastatic colorectal cancer. PloS One, 7, e40476.PubMedCrossRef Barbazan, J., Alonso-Alconada, L., Muinelo-Romay, L., Vieito, M., Abalo, A., et al. (2012). Molecular characterization of circulating tumor cells in human metastatic colorectal cancer. PloS One, 7, e40476.PubMedCrossRef
59.
go back to reference Gupta, G. P., Nguyen, D. X., Chiang, A. C., Bos, P. D., Kim, J. Y., et al. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 446, 765–770.PubMedCrossRef Gupta, G. P., Nguyen, D. X., Chiang, A. C., Bos, P. D., Kim, J. Y., et al. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 446, 765–770.PubMedCrossRef
60.
go back to reference Lunt, S. J., Chaudary, N., & Hill, R. P. (2009). The tumor microenvironment and metastatic disease. Clinical & Experimental Metastasis, 26, 19–34.CrossRef Lunt, S. J., Chaudary, N., & Hill, R. P. (2009). The tumor microenvironment and metastatic disease. Clinical & Experimental Metastasis, 26, 19–34.CrossRef
61.
go back to reference Ellsworth, R., Ellsworth, D., Patney, H., Deyarmin, B., Hooke, J., et al. (2008). Genomic alterations associated with early stages of breast tumor metastasis. Annals of Surgical Oncology, 15, 1989–1995.PubMedCrossRef Ellsworth, R., Ellsworth, D., Patney, H., Deyarmin, B., Hooke, J., et al. (2008). Genomic alterations associated with early stages of breast tumor metastasis. Annals of Surgical Oncology, 15, 1989–1995.PubMedCrossRef
62.
go back to reference Heng, H.H., Bremer, S.W., Stevens, J.B., Horne, S.D., Liu, G., et al. (2013). Chromosomal instability (CIN): what is it and why it is crucial to cancer evolution. Cancer and Metastasis Reviews (in press). Heng, H.H., Bremer, S.W., Stevens, J.B., Horne, S.D., Liu, G., et al. (2013). Chromosomal instability (CIN): what is it and why it is crucial to cancer evolution. Cancer and Metastasis Reviews (in press).
63.
go back to reference Sethi, N., & Kang, Y. (2011). Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nature Reviews Cancer, 11, 735–748.PubMedCrossRef Sethi, N., & Kang, Y. (2011). Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nature Reviews Cancer, 11, 735–748.PubMedCrossRef
64.
go back to reference Frost, P., Kerbel, R. S., Hunt, B., Man, S., & Pathak, S. (1987). Selection of metastatic variants with identifiable karyotypic changes from a nonmetastatic murine tumor after treatment with 2′-deoxy-5-azacytidine or hydroxyurea: implications for the mechanisms of tumor progression. Cancer Research, 47, 2690–2695.PubMed Frost, P., Kerbel, R. S., Hunt, B., Man, S., & Pathak, S. (1987). Selection of metastatic variants with identifiable karyotypic changes from a nonmetastatic murine tumor after treatment with 2′-deoxy-5-azacytidine or hydroxyurea: implications for the mechanisms of tumor progression. Cancer Research, 47, 2690–2695.PubMed
65.
go back to reference Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12, 160–170.PubMedCrossRef Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12, 160–170.PubMedCrossRef
66.
go back to reference Ton, N. C., & Jayson, G. C. (2004). Resistance to anti-VEGF agents. Current Pharmaceutical Design, 10, 51–64.PubMedCrossRef Ton, N. C., & Jayson, G. C. (2004). Resistance to anti-VEGF agents. Current Pharmaceutical Design, 10, 51–64.PubMedCrossRef
67.
go back to reference Horne, S.D., Stevens, J.B., Abdallah, B.Y., Liu, G., Bremer, S.W., et al. (2013). Why Gleevec remains the exception of cancer research—a genome-based evolutionary perspective. Journal of Cellular Physiology 228:665–670 Horne, S.D., Stevens, J.B., Abdallah, B.Y., Liu, G., Bremer, S.W., et al. (2013). Why Gleevec remains the exception of cancer research—a genome-based evolutionary perspective. Journal of Cellular Physiology 228:665–670
68.
go back to reference Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446, 749–757.PubMedCrossRef Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446, 749–757.PubMedCrossRef
69.
go back to reference Duesberg, P., Stindl, R., & Hehlmann, R. (2001). Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 98, 11283–11288.PubMedCrossRef Duesberg, P., Stindl, R., & Hehlmann, R. (2001). Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 98, 11283–11288.PubMedCrossRef
70.
go back to reference Heng, H.H., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., et al. (2013). Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenetic and Genome Research, 2, 144–157. Heng, H.H., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., et al. (2013). Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenetic and Genome Research, 2, 144–157.
71.
go back to reference Forment, J. V., Kaidi, A., & Jackson, S. P. (2012). Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature Reviews Cancer, 12, 663–670.PubMedCrossRef Forment, J. V., Kaidi, A., & Jackson, S. P. (2012). Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature Reviews Cancer, 12, 663–670.PubMedCrossRef
72.
go back to reference Foraker, A. B., Camus, S. M., Evans, T. M., Majeed, S. R., Chen, C.-Y., et al. (2012). Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. The Journal of Cell Biology, 198, 591–605.PubMedCrossRef Foraker, A. B., Camus, S. M., Evans, T. M., Majeed, S. R., Chen, C.-Y., et al. (2012). Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. The Journal of Cell Biology, 198, 591–605.PubMedCrossRef
73.
go back to reference Maher, C. A., Palanisamy, N., Brenner, J. C., Cao, X., Kalyana-Sundaram, S., et al. (2009). Chimeric transcript discovery by paired-end transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 12353–12358.PubMedCrossRef Maher, C. A., Palanisamy, N., Brenner, J. C., Cao, X., Kalyana-Sundaram, S., et al. (2009). Chimeric transcript discovery by paired-end transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 12353–12358.PubMedCrossRef
74.
go back to reference Maher, J., Brentjens, R. J., Gunset, G., Riviere, I., & Sadelain, M. (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR[ζ]/CD28 receptor. Nature Biotechnology, 20, 70–75.PubMedCrossRef Maher, J., Brentjens, R. J., Gunset, G., Riviere, I., & Sadelain, M. (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR[ζ]/CD28 receptor. Nature Biotechnology, 20, 70–75.PubMedCrossRef
75.
go back to reference Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489, 513–518.PubMedCrossRef Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489, 513–518.PubMedCrossRef
76.
go back to reference Heng, H. H. (2009). The genome-centric concept: resynthesis of evolutionary theory. Bioessays, 31, 512–525.PubMedCrossRef Heng, H. H. (2009). The genome-centric concept: resynthesis of evolutionary theory. Bioessays, 31, 512–525.PubMedCrossRef
77.
go back to reference Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.PubMedCrossRef Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.PubMedCrossRef
78.
go back to reference Heng, H.H. (2013). 4-D Genomics: genome dynamics and constraint in evolution: New York: Springer Heng, H.H. (2013). 4-D Genomics: genome dynamics and constraint in evolution: New York: Springer
Metadata
Title
Chromosomal instability and transcriptome dynamics in cancer
Authors
Joshua B. Stevens
Steven D. Horne
Batoul Y. Abdallah
Christine J. Ye
Henry H. Heng
Publication date
01-12-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9428-6

Other articles of this Issue 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine