Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009

Targeting group II PAKs in cancer and metastasis

Authors: Jeyanthy Eswaran, Meera Soundararajan, Stefan Knapp

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

The p21 activated kinases (PAKs) play an essential role in cell signaling and control a variety of cellular functions including cell motility, survival, angiogenesis and mitosis. PAKs are important regulators in growth factor signaling, cytoskeletal reorganization and growth factor-mediated cell migration. Overexpression of PAKs has been detected in many cancers and linked to increased migration potential, anchorage independent growth and metastasis. Six isoforms of PAKs are expressed in human and based on their regulatory properties they have been classified into group I (PAK1–3) and group II (PAK4–6). Besides the well studied group I family, members of the group II PAKs also emerged as interesting targets for the development of new inhibitors for cancer therapy. The availability of high resolution crystal structures for all group II PAKs and their fundamentally different regulatory properties when compared with group I enzymes has opened new opportunities for rational drug designing strategies. In this review, we summarize the results of recent advances of the function of group II PAKs in tumorigenesis and metastasis as well as opportunities for exploring the unique catalytic domain dynamics of this protein family for the design of group II PAK specific inhibitors.
Literature
1.
go back to reference Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in cell biology, 16, 522–529.PubMedCrossRef Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in cell biology, 16, 522–529.PubMedCrossRef
2.
go back to reference Millard, T. H., Sharp, S. J., & Machesky, L. M. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. The Biochemical Journal, 380, 1–17.PubMedCrossRef Millard, T. H., Sharp, S. J., & Machesky, L. M. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. The Biochemical Journal, 380, 1–17.PubMedCrossRef
3.
go back to reference Kovar, D. R. (2006). Molecular details of formin-mediated actin assembly. Current opinion in cell biology, 18, 11–7.PubMedCrossRef Kovar, D. R. (2006). Molecular details of formin-mediated actin assembly. Current opinion in cell biology, 18, 11–7.PubMedCrossRef
4.
go back to reference Riento, K., Totty, N., Villalonga, P., Garg, R., Guasch, R., & Ridley, A. J. (2005). RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO journal, 24, 1170–1180.PubMedCrossRef Riento, K., Totty, N., Villalonga, P., Garg, R., Guasch, R., & Ridley, A. J. (2005). RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO journal, 24, 1170–1180.PubMedCrossRef
5.
go back to reference Riento, K., Villalonga, P., Garg, R., & Ridley, A. (2005). Function and regulation of RhoE. Biochemical Society transactions, 33, 649–651.PubMedCrossRef Riento, K., Villalonga, P., Garg, R., & Ridley, A. (2005). Function and regulation of RhoE. Biochemical Society transactions, 33, 649–651.PubMedCrossRef
6.
go back to reference Bokoch, G. M. (2000). Regulation of cell function by Rho family GTPases. Immunologic research, 21, 39–148.CrossRef Bokoch, G. M. (2000). Regulation of cell function by Rho family GTPases. Immunologic research, 21, 39–148.CrossRef
7.
8.
go back to reference Bamburg, J. R., & Wiggan, O. P. (2002). ADF/cofilin and actin dynamics in disease. Trends Cell Biol, 12, 598–605.PubMedCrossRef Bamburg, J. R., & Wiggan, O. P. (2002). ADF/cofilin and actin dynamics in disease. Trends Cell Biol, 12, 598–605.PubMedCrossRef
9.
go back to reference Edwards, D. C., Sanders, L. C., Bokoch, G. M., & Gill, G. N. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature cell biology, 1, 253–259.PubMedCrossRef Edwards, D. C., Sanders, L. C., Bokoch, G. M., & Gill, G. N. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature cell biology, 1, 253–259.PubMedCrossRef
10.
go back to reference Soosairajah, J., Maiti, S., Wiggan, O., et al. (2005). Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO journal, 24, 473–486.PubMedCrossRef Soosairajah, J., Maiti, S., Wiggan, O., et al. (2005). Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO journal, 24, 473–486.PubMedCrossRef
11.
go back to reference Dan, C., Kelly, A., Bernard, O., & Minden, A. (2001). Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. Journal of Biological Chemistry, 276, 2115–32121.CrossRef Dan, C., Kelly, A., Bernard, O., & Minden, A. (2001). Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. Journal of Biological Chemistry, 276, 2115–32121.CrossRef
12.
go back to reference Gohla, A., & Bokoch, G. M. (2002). 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Current Biology, 12, 1704–1710.PubMedCrossRef Gohla, A., & Bokoch, G. M. (2002). 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Current Biology, 12, 1704–1710.PubMedCrossRef
13.
go back to reference Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108, 233–246.PubMedCrossRef Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108, 233–246.PubMedCrossRef
14.
go back to reference Danzer, K. M., Schnack, C., Sutcliffe, A., Hengerer, B., & Gillardon, F. (2007). Functional protein kinase arrays reveal inhibition of p-21-activated kinase 4 by alpha-synuclein oligomers. Journal Neurochemistry, 103, 2401–2407.CrossRef Danzer, K. M., Schnack, C., Sutcliffe, A., Hengerer, B., & Gillardon, F. (2007). Functional protein kinase arrays reveal inhibition of p-21-activated kinase 4 by alpha-synuclein oligomers. Journal Neurochemistry, 103, 2401–2407.CrossRef
15.
go back to reference Abo, A., Qu, J., Cammarano, M. S., et al. (1998). PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. Embo Journal, 17, 6527–6540.PubMedCrossRef Abo, A., Qu, J., Cammarano, M. S., et al. (1998). PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. Embo Journal, 17, 6527–6540.PubMedCrossRef
16.
go back to reference Manser, E., Leung, T., & Lim, L. (1998). Identification and characterization of small GTPase-associated kinases. Methods in molecular biology, 84, 295–305.PubMed Manser, E., Leung, T., & Lim, L. (1998). Identification and characterization of small GTPase-associated kinases. Methods in molecular biology, 84, 295–305.PubMed
17.
go back to reference Zenke, F. T., Krendel, M., DerMardirossian, C., King, C. C., Bohl, B. P., & Bokoch, G. M. (2004). p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. Journal of Biological Chemistry, 279, 18392–18400.PubMedCrossRef Zenke, F. T., Krendel, M., DerMardirossian, C., King, C. C., Bohl, B. P., & Bokoch, G. M. (2004). p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. Journal of Biological Chemistry, 279, 18392–18400.PubMedCrossRef
18.
go back to reference Gringel, A., Walz, D., Rosenberger, G., et al. (2006). PAK4 and alphaPIX determine podosome size and number in macrophages through localized actin regulation. J Cell Physiol, 209, 568–579.PubMedCrossRef Gringel, A., Walz, D., Rosenberger, G., et al. (2006). PAK4 and alphaPIX determine podosome size and number in macrophages through localized actin regulation. J Cell Physiol, 209, 568–579.PubMedCrossRef
19.
go back to reference Rennefahrt, U. E., Deacon, S. W., Parker, S. A., et al. (2007). Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. Journal of Biological Chemistry, 282, 15667–15678.PubMedCrossRef Rennefahrt, U. E., Deacon, S. W., Parker, S. A., et al. (2007). Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. Journal of Biological Chemistry, 282, 15667–15678.PubMedCrossRef
20.
go back to reference Penzes, P., Beeser, A., Chernoff, J., et al. (2003). Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron, 37, 263–274.PubMedCrossRef Penzes, P., Beeser, A., Chernoff, J., et al. (2003). Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron, 37, 263–274.PubMedCrossRef
21.
go back to reference Callow, M. G., Zozulya, S., Gishizky, M. L., Jallal, B., & Smeal, T. (2005). PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci, 118, 1861–1872.PubMedCrossRef Callow, M. G., Zozulya, S., Gishizky, M. L., Jallal, B., & Smeal, T. (2005). PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci, 118, 1861–1872.PubMedCrossRef
22.
go back to reference Birkenfeld, J., Nalbant, P., Yoon, S. H., & Bokoch, G. M. (2008). Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis. Trends Cell Biol, 18, 210–219.PubMedCrossRef Birkenfeld, J., Nalbant, P., Yoon, S. H., & Bokoch, G. M. (2008). Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis. Trends Cell Biol, 18, 210–219.PubMedCrossRef
23.
go back to reference Wells, C. M., Abo, A., & Ridley, A. J. (2002). PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J Cell Sci, 115, 3947–3956.PubMedCrossRef Wells, C. M., Abo, A., & Ridley, A. J. (2002). PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J Cell Sci, 115, 3947–3956.PubMedCrossRef
24.
go back to reference Ahmed, T., Shea, K., Masters, J. R., Jones, G. E., & Wells, C. M. (2008). A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal, 20, 1320–1328.PubMedCrossRef Ahmed, T., Shea, K., Masters, J. R., Jones, G. E., & Wells, C. M. (2008). A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal, 20, 1320–1328.PubMedCrossRef
25.
go back to reference Ahmed, S., Prigmore, E., Govind, S., et al. (1998). Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox). Journal of Biological Chemistry, 273, 15693–15701.PubMedCrossRef Ahmed, S., Prigmore, E., Govind, S., et al. (1998). Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox). Journal of Biological Chemistry, 273, 15693–15701.PubMedCrossRef
26.
go back to reference Dan, C., Nath, N., Liberto, M., & Minden, A. (2002). PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Methods in molecular biology, 22, 567–577. Dan, C., Nath, N., Liberto, M., & Minden, A. (2002). PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Methods in molecular biology, 22, 567–577.
27.
go back to reference Bryan, B., Kumar, V., Stafford, L. J., Cai, Y., Wu, G., & Liu, M. (2004). GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. Journal of Biological Chemistry, 279, 45824–45832.PubMedCrossRef Bryan, B., Kumar, V., Stafford, L. J., Cai, Y., Wu, G., & Liu, M. (2004). GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. Journal of Biological Chemistry, 279, 45824–45832.PubMedCrossRef
28.
go back to reference Salminen, A., Suuronen, T., & Kaarniranta, K. (2008). ROCK, PAK, and Toll of synapses in Alzheimer’s disease. Biochemical and biophysical research communications, 371, 587–590.PubMedCrossRef Salminen, A., Suuronen, T., & Kaarniranta, K. (2008). ROCK, PAK, and Toll of synapses in Alzheimer’s disease. Biochemical and biophysical research communications, 371, 587–590.PubMedCrossRef
29.
go back to reference Ma, Q. L., Yang, F., Calon, F., et al. (2008). p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis. Journal of Biological Chemistry, 283, 14132–14143.PubMedCrossRef Ma, Q. L., Yang, F., Calon, F., et al. (2008). p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis. Journal of Biological Chemistry, 283, 14132–14143.PubMedCrossRef
30.
go back to reference Zhou, G. L., Tucker, D. F., Bae, S. S., Bhatheja, K., Birnbaum, M. J., & Field, J. (2006). Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. Journal of Biological Chemistry, 281, 36443–36453.PubMedCrossRef Zhou, G. L., Tucker, D. F., Bae, S. S., Bhatheja, K., Birnbaum, M. J., & Field, J. (2006). Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. Journal of Biological Chemistry, 281, 36443–36453.PubMedCrossRef
31.
go back to reference Matenia, D., Griesshaber, B., Li, X. Y., et al. (2005). PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell, 16, 4410–4422.PubMedCrossRef Matenia, D., Griesshaber, B., Li, X. Y., et al. (2005). PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell, 16, 4410–4422.PubMedCrossRef
32.
go back to reference Timm, T., Matenia, D., Li, X. Y., Griesshaber, B., & Mandelkow, E. M. (2006). Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis, 3, 207–217.PubMedCrossRef Timm, T., Matenia, D., Li, X. Y., Griesshaber, B., & Mandelkow, E. M. (2006). Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis, 3, 207–217.PubMedCrossRef
33.
go back to reference Gnesutta, N., Qu, J., & Minden, A. (2001). The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. Journal of Biological Chemistry, 276, 14414–14419.PubMedCrossRef Gnesutta, N., Qu, J., & Minden, A. (2001). The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. Journal of Biological Chemistry, 276, 14414–14419.PubMedCrossRef
34.
go back to reference Cotteret, S., Jaffer, Z. M., Beeser, A., & Chernoff, J. (2003). p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Methods in molecular biology, 23, 5526–5539. Cotteret, S., Jaffer, Z. M., Beeser, A., & Chernoff, J. (2003). p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Methods in molecular biology, 23, 5526–5539.
35.
go back to reference Gnesutta, N., & Minden, A. (2003). Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Methods in molecular biology, 23, 7838–7848. Gnesutta, N., & Minden, A. (2003). Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Methods in molecular biology, 23, 7838–7848.
36.
go back to reference Li, X., & Minden, A. (2005). PAK4 functions in tumor necrosis factor (TNF) alpha-induced survival pathways by facilitating TRADD binding to the TNF receptor. Journal of Biological Chemistry, 280, 41192–41200.PubMedCrossRef Li, X., & Minden, A. (2005). PAK4 functions in tumor necrosis factor (TNF) alpha-induced survival pathways by facilitating TRADD binding to the TNF receptor. Journal of Biological Chemistry, 280, 41192–41200.PubMedCrossRef
37.
go back to reference Lu, Y., Pan, Z. Z., Devaux, Y., & Ray, P. (2003). p21-activated protein kinase 4 (PAK4) interacts with the keratinocyte growth factor receptor and participates in keratinocyte growth factor-mediated inhibition of oxidant-induced cell death. Journal of Biological Chemistry, 278, 10374–10380.PubMedCrossRef Lu, Y., Pan, Z. Z., Devaux, Y., & Ray, P. (2003). p21-activated protein kinase 4 (PAK4) interacts with the keratinocyte growth factor receptor and participates in keratinocyte growth factor-mediated inhibition of oxidant-induced cell death. Journal of Biological Chemistry, 278, 10374–10380.PubMedCrossRef
38.
go back to reference Qu, J., Cammarano, M. S., Shi, Q., Ha, K. C., de Lanerolle, P., & Minden, A. (2001). Activated PAK4 regulates cell adhesion and anchorage-independent growth. Methods in molecular biology, 21, 3523–3533. Qu, J., Cammarano, M. S., Shi, Q., Ha, K. C., de Lanerolle, P., & Minden, A. (2001). Activated PAK4 regulates cell adhesion and anchorage-independent growth. Methods in molecular biology, 21, 3523–3533.
39.
go back to reference Wu, X., & Frost, J. A. (2006). Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochemical and biophysical research communications, 351, 328–335.PubMedCrossRef Wu, X., & Frost, J. A. (2006). Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochemical and biophysical research communications, 351, 328–335.PubMedCrossRef
40.
go back to reference Cotteret, S., & Chernoff, J. (2006). Nucleocytoplasmic shuttling of Pak5 regulates its antiapoptotic properties. Methods in molecular biology, 26, 3215–3230. Cotteret, S., & Chernoff, J. (2006). Nucleocytoplasmic shuttling of Pak5 regulates its antiapoptotic properties. Methods in molecular biology, 26, 3215–3230.
41.
go back to reference Beg, A. A., & Baltimore, D. (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science, 274, 782–784.PubMedCrossRef Beg, A. A., & Baltimore, D. (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science, 274, 782–784.PubMedCrossRef
42.
go back to reference Chen, G., & Goeddel, D. V. (2002). TNF-R1 signaling: a beautiful pathway. Science, 296, 1634–1635.PubMedCrossRef Chen, G., & Goeddel, D. V. (2002). TNF-R1 signaling: a beautiful pathway. Science, 296, 1634–1635.PubMedCrossRef
43.
go back to reference Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature reviews. Cancer, 6, 459–471.PubMedCrossRef Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature reviews. Cancer, 6, 459–471.PubMedCrossRef
44.
go back to reference Mahlamaki, E. H., Kauraniemi, P., Monni, O., Wolf, M., Hautaniemi, S., & Kallioniemi, A. (2004). High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia, 6, 432–439.PubMedCrossRef Mahlamaki, E. H., Kauraniemi, P., Monni, O., Wolf, M., Hautaniemi, S., & Kallioniemi, A. (2004). High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia, 6, 432–439.PubMedCrossRef
45.
go back to reference Kim, J. H., Kim, H. N., Lee, K. T., et al. (2008). Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis. Tumour Biology, 29, 41–49.PubMedCrossRef Kim, J. H., Kim, H. N., Lee, K. T., et al. (2008). Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis. Tumour Biology, 29, 41–49.PubMedCrossRef
46.
go back to reference Callow, M. G., Clairvoyant, F., Zhu, S., et al. (2002). Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. Journal of Biological Chemistry, 277, 550–558.PubMedCrossRef Callow, M. G., Clairvoyant, F., Zhu, S., et al. (2002). Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. Journal of Biological Chemistry, 277, 550–558.PubMedCrossRef
47.
go back to reference Cammarano, M. S., Nekrasova, T., Noel, B., & Minden, A. (2005). Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Methods in molecular biology, 25, 9532–9542. Cammarano, M. S., Nekrasova, T., Noel, B., & Minden, A. (2005). Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Methods in molecular biology, 25, 9532–9542.
48.
go back to reference Zhang, H., Li, Z., Viklund, E. K., & Stromblad, S. (2002). P21-activated kinase 4 interacts with integrin alpha v beta 5 and regulates alpha v beta 5-mediated cell migration. Journal Cell Biology, 158, 1287–1297.CrossRef Zhang, H., Li, Z., Viklund, E. K., & Stromblad, S. (2002). P21-activated kinase 4 interacts with integrin alpha v beta 5 and regulates alpha v beta 5-mediated cell migration. Journal Cell Biology, 158, 1287–1297.CrossRef
49.
go back to reference Tulasne, D., & Foveau, B. (2008). The shadow of death on the MET tyrosine kinase receptor. Cell death and differentiation, 15, 427–434.PubMedCrossRef Tulasne, D., & Foveau, B. (2008). The shadow of death on the MET tyrosine kinase receptor. Cell death and differentiation, 15, 427–434.PubMedCrossRef
50.
go back to reference Singh, S., Sadanandam, A., & Singh, R. K. (2007). Chemokines in tumor angiogenesis and metastasis. Cancer metastasis reviews, 26, 453–467.PubMedCrossRef Singh, S., Sadanandam, A., & Singh, R. K. (2007). Chemokines in tumor angiogenesis and metastasis. Cancer metastasis reviews, 26, 453–467.PubMedCrossRef
51.
go back to reference Kaur, R., Yuan, X., Lu, M. L., & Balk, S. P. (2008). Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate, 68, 1510–1516.PubMedCrossRef Kaur, R., Yuan, X., Lu, M. L., & Balk, S. P. (2008). Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate, 68, 1510–1516.PubMedCrossRef
52.
go back to reference Wang, Y., Yu, Q., Cho, A. H., et al. (2005). Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia, 7, 748–760.PubMedCrossRef Wang, Y., Yu, Q., Cho, A. H., et al. (2005). Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia, 7, 748–760.PubMedCrossRef
53.
go back to reference Yang, F., Li, X., Sharma, M., Zarnegar, M., Lim, B., & Sun, Z. (2001). Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. Journal of Biological Chemistry, 276, 15345–15353.PubMedCrossRef Yang, F., Li, X., Sharma, M., Zarnegar, M., Lim, B., & Sun, Z. (2001). Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. Journal of Biological Chemistry, 276, 15345–15353.PubMedCrossRef
54.
go back to reference Lee, S. R., Ramos, S. M., Ko, A., et al. (2002). AR and ER interaction with a p21-activated kinase (PAK6). Molecular endocrinology, 16, 85–99.PubMedCrossRef Lee, S. R., Ramos, S. M., Ko, A., et al. (2002). AR and ER interaction with a p21-activated kinase (PAK6). Molecular endocrinology, 16, 85–99.PubMedCrossRef
55.
go back to reference Schrantz, N., da Silva Correia, J., Fowler, B., Ge, Q., Sun, Z., & Bokoch, G. M. (2004). Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. Journal of Biological Chemistry, 279, 1922–1931.PubMedCrossRef Schrantz, N., da Silva Correia, J., Fowler, B., Ge, Q., Sun, Z., & Bokoch, G. M. (2004). Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. Journal of Biological Chemistry, 279, 1922–1931.PubMedCrossRef
56.
go back to reference van de Wijngaart, D. J., van Royen, M. E., Hersmus, R., et al. (2006). Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. Journal of Biological Chemistry, 281, 19407–19416.PubMedCrossRef van de Wijngaart, D. J., van Royen, M. E., Hersmus, R., et al. (2006). Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. Journal of Biological Chemistry, 281, 19407–19416.PubMedCrossRef
57.
go back to reference Rayala, S. K., & Kumar, R. (2007). Sliding p21-activated kinase 1 to nucleus impacts tamoxifen sensitivity. Biomed Pharmacother, 61, 408–411.PubMedCrossRef Rayala, S. K., & Kumar, R. (2007). Sliding p21-activated kinase 1 to nucleus impacts tamoxifen sensitivity. Biomed Pharmacother, 61, 408–411.PubMedCrossRef
58.
go back to reference Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., & Lim, L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367, 40–46.PubMedCrossRef Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., & Lim, L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367, 40–46.PubMedCrossRef
59.
go back to reference Bokoch, G. M., Wang, Y., Bohl, B. P., Sells, M. A., Quilliam, L. A., & Knaus, U. G. (1996). Interaction of the Nck adapter protein with p21-activated kinase (PAK1). Journal of Biological Chemistry, 271, 25746–25749.PubMedCrossRef Bokoch, G. M., Wang, Y., Bohl, B. P., Sells, M. A., Quilliam, L. A., & Knaus, U. G. (1996). Interaction of the Nck adapter protein with p21-activated kinase (PAK1). Journal of Biological Chemistry, 271, 25746–25749.PubMedCrossRef
60.
go back to reference Galisteo, M. L., Chernoff, J., Su, Y. C., Skolnik, E. Y., & Schlessinger, J. (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. Journal of Biological Chemistry, 271, 20997–21000.PubMedCrossRef Galisteo, M. L., Chernoff, J., Su, Y. C., Skolnik, E. Y., & Schlessinger, J. (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. Journal of Biological Chemistry, 271, 20997–21000.PubMedCrossRef
61.
go back to reference King, C. C., Gardiner, E. M., Zenke, F. T., et al. (2000). p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). Journal of Biological Chemistry, 275, 41201–41209.PubMedCrossRef King, C. C., Gardiner, E. M., Zenke, F. T., et al. (2000). p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). Journal of Biological Chemistry, 275, 41201–41209.PubMedCrossRef
62.
go back to reference Rudel, T., & Bokoch, G. M. (1997). Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science, 276, 1571–1574.PubMedCrossRef Rudel, T., & Bokoch, G. M. (1997). Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science, 276, 1571–1574.PubMedCrossRef
63.
go back to reference Pandey, A., Dan, I., Kristiansen, T. Z., et al. (2002). Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene, 21, 3939–3948.PubMedCrossRef Pandey, A., Dan, I., Kristiansen, T. Z., et al. (2002). Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene, 21, 3939–3948.PubMedCrossRef
64.
go back to reference Ching, Y. P., Leong, V. Y., Wong, C. M., & Kung, H. F. (2003). Identification of an autoinhibitory domain of p21-activated protein kinase 5. Journal of Biological Chemistry, 278, 33621–33624.PubMedCrossRef Ching, Y. P., Leong, V. Y., Wong, C. M., & Kung, H. F. (2003). Identification of an autoinhibitory domain of p21-activated protein kinase 5. Journal of Biological Chemistry, 278, 33621–33624.PubMedCrossRef
65.
go back to reference Buchwald, G., Hostinova, E., Rudolph, M. G., et al. (2001). Conformational switch and role of phosphorylation in PAK activation. Methods in molecular biology, 21, 5179–5189. Buchwald, G., Hostinova, E., Rudolph, M. G., et al. (2001). Conformational switch and role of phosphorylation in PAK activation. Methods in molecular biology, 21, 5179–5189.
66.
go back to reference Parrini, M. C., Lei, M., Harrison, S. C., & Mayer, B. J. (2002). Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell, 9, 73–83.PubMedCrossRef Parrini, M. C., Lei, M., Harrison, S. C., & Mayer, B. J. (2002). Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell, 9, 73–83.PubMedCrossRef
67.
go back to reference Chong, C., Tan, L., Lim, L., & Manser, E. (2001). The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. Journal of Biological Chemistry, 276, 17347–17353.PubMedCrossRef Chong, C., Tan, L., Lim, L., & Manser, E. (2001). The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. Journal of Biological Chemistry, 276, 17347–17353.PubMedCrossRef
68.
go back to reference Lei, M., Lu, W., Meng, W., et al. (2000). Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell, 102, 387–397.PubMedCrossRef Lei, M., Lu, W., Meng, W., et al. (2000). Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell, 102, 387–397.PubMedCrossRef
69.
go back to reference Pirruccello, M., Sondermann, H., Pelton, J. G., et al. (2006). A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol, 361, 312–326.PubMedCrossRef Pirruccello, M., Sondermann, H., Pelton, J. G., et al. (2006). A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol, 361, 312–326.PubMedCrossRef
70.
go back to reference Eswaran, J., Lee, W. H., Debreczeni, J. E., et al. (2007). Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure, 15, 201–213.PubMedCrossRef Eswaran, J., Lee, W. H., Debreczeni, J. E., et al. (2007). Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure, 15, 201–213.PubMedCrossRef
71.
go back to reference Eswaran, J., Soundararajan, M., Kumar, R., & Knapp, S. (2008). UnPAKing the class differences among p21-activated kinases. Trends in biochemical sciences, 33, 394–403.PubMedCrossRef Eswaran, J., Soundararajan, M., Kumar, R., & Knapp, S. (2008). UnPAKing the class differences among p21-activated kinases. Trends in biochemical sciences, 33, 394–403.PubMedCrossRef
72.
go back to reference Arias-Romero, L. E., & Chernoff, J. (2008). A tale of two Paks. Biology of the cell, 100, 97–108.PubMedCrossRef Arias-Romero, L. E., & Chernoff, J. (2008). A tale of two Paks. Biology of the cell, 100, 97–108.PubMedCrossRef
73.
go back to reference Lei, M., Robinson, M. A., & Harrison, S. C. (2005). The active conformation of the PAK1 kinase domain. Structure, 13, 769–778.PubMedCrossRef Lei, M., Robinson, M. A., & Harrison, S. C. (2005). The active conformation of the PAK1 kinase domain. Structure, 13, 769–778.PubMedCrossRef
74.
go back to reference Bokoch, G. M. (2008). PAK’n it in: identification of a selective PAK inhibitor. Chemistry & biology, 15, 305–306.CrossRef Bokoch, G. M. (2008). PAK’n it in: identification of a selective PAK inhibitor. Chemistry & biology, 15, 305–306.CrossRef
75.
go back to reference Zhao, Z. S., Manser, E., Chen, X. Q., Chong, C., Leung, T., & Lim, L. (1998). A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Methods in molecular biology, 18, 2153–2163. Zhao, Z. S., Manser, E., Chen, X. Q., Chong, C., Leung, T., & Lim, L. (1998). A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Methods in molecular biology, 18, 2153–2163.
76.
go back to reference Deacon, S. W., Beeser, A., Fukui, J. A., et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chemistry & biology, 15, 322–331.CrossRef Deacon, S. W., Beeser, A., Fukui, J. A., et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chemistry & biology, 15, 322–331.CrossRef
77.
go back to reference Fedorov, O., Marsden, B., Pogacic, V., et al. (2007). A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences of the United States of America, 104, 20523–20528.PubMedCrossRef Fedorov, O., Marsden, B., Pogacic, V., et al. (2007). A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences of the United States of America, 104, 20523–20528.PubMedCrossRef
78.
go back to reference Bain, J., Plater, L., Elliott, M., et al. (2007). The selectivity of protein kinase inhibitors: a further update. The Biochemical journal, 408, 297–315.PubMedCrossRef Bain, J., Plater, L., Elliott, M., et al. (2007). The selectivity of protein kinase inhibitors: a further update. The Biochemical journal, 408, 297–315.PubMedCrossRef
Metadata
Title
Targeting group II PAKs in cancer and metastasis
Authors
Jeyanthy Eswaran
Meera Soundararajan
Stefan Knapp
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9181-4

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine