Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2008

01-03-2008

Inflammation, inflammatory cells and angiogenesis: decisions and indecisions

Authors: Douglas M. Noonan, Andrea De Lerma Barbaro, Nicola Vannini, Lorenzo Mortara, Adriana Albini

Published in: Cancer and Metastasis Reviews | Issue 1/2008

Login to get access

Abstract

Endothelial-immune cell cross-talk goes well beyond leukocyte and lymphocyte trafficking, since immune cells are able to intimately regulate vessel formation and function. Here we review the evidence that most immune cells are capable of polarization towards a dichotomous activity either inducing or inhibiting angiogenesis. In addition to the well-known roles of tumor associated macrophages, we find that neutrophils, myeloid-derived suppressor and dendritic cells clearly have the potential for influencing tumor angiogenesis. Further, the physiological functions of NK cells suggest that these cells may also show a potentially important role in pro- or anti-angiogenesis regulation within the tumor microenvironment. At the same time many angiogenic factors influence the activity and function of immune cells that generally favor tumor survival and tolerance. Thus the immune system itself represents a major pharmaceutical target and links angiogenesis inhibition to immunotherapy.
Literature
1.
go back to reference Kerbel, R., & Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nature Reviews. Cancer, 2, 727–739.PubMed Kerbel, R., & Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nature Reviews. Cancer, 2, 727–739.PubMed
2.
go back to reference Viloria-Petit, A., Crombet, T., Jothy, S., Hicklin, D., Bohlen, P., Schlaeppi, J. M., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: A role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMed Viloria-Petit, A., Crombet, T., Jothy, S., Hicklin, D., Bohlen, P., Schlaeppi, J. M., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: A role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMed
3.
go back to reference Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMed Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMed
4.
go back to reference Dorrell, M. I., Aguilar, E., Scheppke, L., Barnett, F. H., & Friedlander, M. (2007). Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 967–972.PubMed Dorrell, M. I., Aguilar, E., Scheppke, L., Barnett, F. H., & Friedlander, M. (2007). Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 967–972.PubMed
5.
go back to reference Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews Drug Discovery, 6, 273–286.PubMed Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews Drug Discovery, 6, 273–286.PubMed
6.
go back to reference Folkman, J. (2006). Angiogenesis. Annual Review of Medicine, 57, 1–18.PubMed Folkman, J. (2006). Angiogenesis. Annual Review of Medicine, 57, 1–18.PubMed
7.
go back to reference Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMed Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMed
8.
go back to reference Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.PubMed Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.PubMed
9.
go back to reference Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4, 71–78.PubMed Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4, 71–78.PubMed
10.
go back to reference Orimo, A., & Weinberg, R. A. (2006). Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle, 5, 1597–1601.PubMed Orimo, A., & Weinberg, R. A. (2006). Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle, 5, 1597–1601.PubMed
11.
go back to reference Brigati, C., Noonan, D. M., Albini, A., & Benelli, R. (2002). Tumors and inflammatory infiltrates: Friends or foes? Clinical & Experimental Metastasis, 19, 247–258. Brigati, C., Noonan, D. M., Albini, A., & Benelli, R. (2002). Tumors and inflammatory infiltrates: Friends or foes? Clinical & Experimental Metastasis, 19, 247–258.
12.
go back to reference Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.PubMed Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.PubMed
13.
go back to reference de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6, 24–37.PubMed de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6, 24–37.PubMed
14.
go back to reference Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–168 discussion 168–172, 259–169.PubMed Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–168 discussion 168–172, 259–169.PubMed
15.
go back to reference Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.PubMed Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.PubMed
16.
go back to reference Murdoch, C., Muthana, M., & Lewis, C. E. (2005). Hypoxia regulates macrophage functions in inflammation. Journal of Immunology, 175, 6257–6263. Murdoch, C., Muthana, M., & Lewis, C. E. (2005). Hypoxia regulates macrophage functions in inflammation. Journal of Immunology, 175, 6257–6263.
17.
go back to reference Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.PubMed Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.PubMed
18.
go back to reference Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer and Metastasis Reviews, 25, 409–416.PubMed Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer and Metastasis Reviews, 25, 409–416.PubMed
19.
go back to reference Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5, 641–654.PubMed Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5, 641–654.PubMed
20.
go back to reference Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., et al. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood, 97, 785–791.PubMed Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., et al. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood, 97, 785–791.PubMed
21.
go back to reference Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A., & Marme, D. (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87, 3336–3343.PubMed Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A., & Marme, D. (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87, 3336–3343.PubMed
22.
go back to reference Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J., et al. (1996). The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. Journal of Biological Chemistry, 271, 17629–17634.PubMed Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J., et al. (1996). The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. Journal of Biological Chemistry, 271, 17629–17634.PubMed
23.
go back to reference Aplin, A. C., Gelati, M., Fogel, E., Carnevale, E., & Nicosia, R. F. (2006). Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiological Genomics, 27, 20–28.PubMed Aplin, A. C., Gelati, M., Fogel, E., Carnevale, E., & Nicosia, R. F. (2006). Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiological Genomics, 27, 20–28.PubMed
24.
go back to reference Di Carlo, E., Forni, G., Lollini, P., Colombo, M. P., Modesti, A., & Musiani, P. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97, 339–345.PubMed Di Carlo, E., Forni, G., Lollini, P., Colombo, M. P., Modesti, A., & Musiani, P. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97, 339–345.PubMed
25.
go back to reference Heryanto, B., Girling, J. E., & Rogers, P. A. (2004). Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction, 127, 613–620.PubMed Heryanto, B., Girling, J. E., & Rogers, P. A. (2004). Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction, 127, 613–620.PubMed
26.
go back to reference Gargett, C. E., Lederman, F., Heryanto, B., Gambino, L. S., & Rogers, P. A. (2001). Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Human Reproduction, 16, 1065–1075.PubMed Gargett, C. E., Lederman, F., Heryanto, B., Gambino, L. S., & Rogers, P. A. (2001). Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Human Reproduction, 16, 1065–1075.PubMed
27.
go back to reference Na, Y. J., Yang, S. H., Baek, D. W., Lee, D. H., Kim, K. H., Choi, Y. M., et al. (2006). Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes. Human Reproduction, 21, 1846–1855.PubMed Na, Y. J., Yang, S. H., Baek, D. W., Lee, D. H., Kim, K. H., Choi, Y. M., et al. (2006). Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes. Human Reproduction, 21, 1846–1855.PubMed
28.
go back to reference Lin, Y. J., Lai, M. D., Lei, H. Y., & Wing, L. Y. (2006). Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology, 147, 1278–1286.PubMed Lin, Y. J., Lai, M. D., Lei, H. Y., & Wing, L. Y. (2006). Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology, 147, 1278–1286.PubMed
29.
go back to reference Schruefer, R., Sulyok, S., Schymeinsky, J., Peters, T., Scharffetter-Kochanek, K., & Walzog, B. (2006). The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice. Journal of Vascular Research, 43, 1–11.PubMed Schruefer, R., Sulyok, S., Schymeinsky, J., Peters, T., Scharffetter-Kochanek, K., & Walzog, B. (2006). The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice. Journal of Vascular Research, 43, 1–11.PubMed
30.
go back to reference Benelli, R., Barbero, A., Ferrini, S., Scapini, P., Cassatella, M., Bussolino, F., et al. (2000). Human Immunodeficiency Virus Transactivator Protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: Implications for Tat-mediated pathogenesis. Journal of Infectious Diseases, 182, 1643–1651.PubMed Benelli, R., Barbero, A., Ferrini, S., Scapini, P., Cassatella, M., Bussolino, F., et al. (2000). Human Immunodeficiency Virus Transactivator Protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: Implications for Tat-mediated pathogenesis. Journal of Infectious Diseases, 182, 1643–1651.PubMed
31.
go back to reference Kibbey, M. C., Corcoran, M. L., Wahl, L. M., & Kleinman, H. K. (1994). Laminin SIKVAV peptide induced angiogenesis in vivo is potentiated by neutrophils. Journal of Cellular Physiology, 160, 185–193.PubMed Kibbey, M. C., Corcoran, M. L., Wahl, L. M., & Kleinman, H. K. (1994). Laminin SIKVAV peptide induced angiogenesis in vivo is potentiated by neutrophils. Journal of Cellular Physiology, 160, 185–193.PubMed
32.
go back to reference Benelli, R., Morini, M., Carrozzino, F., Ferrari, N., Minghelli, S., Santi, L., et al. (2002). Neutrophils as a key cellular target for angiostatin: Implications for regulation of angiogenesis and inflammation. FASEB Journal, 16, 267–269.PubMed Benelli, R., Morini, M., Carrozzino, F., Ferrari, N., Minghelli, S., Santi, L., et al. (2002). Neutrophils as a key cellular target for angiostatin: Implications for regulation of angiogenesis and inflammation. FASEB Journal, 16, 267–269.PubMed
33.
go back to reference Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172, 5034–5040. Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172, 5034–5040.
34.
go back to reference Ohki, Y., Heissig, B., Sato, Y., Akiyama, H., Zhu, Z., Hicklin, D. J., et al. (2005). Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB Journal, 19, 2005–2007.PubMed Ohki, Y., Heissig, B., Sato, Y., Akiyama, H., Zhu, Z., Hicklin, D. J., et al. (2005). Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB Journal, 19, 2005–2007.PubMed
35.
go back to reference Coussens, L. M., & Werb, Z. (2001). Inflammatory cells and cancer: Think different!. Journal of Experimental Medicine, 193, F23–F26.PubMed Coussens, L. M., & Werb, Z. (2001). Inflammatory cells and cancer: Think different!. Journal of Experimental Medicine, 193, F23–F26.PubMed
36.
go back to reference Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.PubMed Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.PubMed
37.
go back to reference Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.PubMed Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.PubMed
38.
go back to reference Karin, M. (2005). Inflammation and cancer: The long reach of Ras. Nature Medicine, 11, 20–21.PubMed Karin, M. (2005). Inflammation and cancer: The long reach of Ras. Nature Medicine, 11, 20–21.PubMed
39.
go back to reference Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447–458.PubMed Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447–458.PubMed
40.
go back to reference Cassatella, M. A. (2006). On the production of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2L) by human neutrophils. Journal of Leukocyte Biology, 79, 1140–1149.PubMed Cassatella, M. A. (2006). On the production of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2L) by human neutrophils. Journal of Leukocyte Biology, 79, 1140–1149.PubMed
41.
go back to reference Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N., & Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity, 21, 215–226.PubMed Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N., & Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity, 21, 215–226.PubMed
42.
go back to reference Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: Potential initiators of the angiogenic cascade. In M. Cassatella (Ed.) The neutrophil (vol. vol. 83, (pp. 167–181)). Basel: Karger. Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: Potential initiators of the angiogenic cascade. In M. Cassatella (Ed.) The neutrophil (vol. vol. 83, (pp. 167–181)). Basel: Karger.
43.
go back to reference Scapini, P., Nesi, L., Morini, M., Tanghetti, E., Belleri, M., Noonan, D., et al. (2002). Generation of biologically active angiostatin kringle 1–3 by activated human neutrophils. Journal of Immunology, 168, 5798–5804. Scapini, P., Nesi, L., Morini, M., Tanghetti, E., Belleri, M., Noonan, D., et al. (2002). Generation of biologically active angiostatin kringle 1–3 by activated human neutrophils. Journal of Immunology, 168, 5798–5804.
44.
go back to reference Kaipainen, A., Kieran, M. W., Huang, S., Butterfield, C., Bielenberg, D., Mostoslavsky, G., et al. (2007). PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS ONE, 2, e260.PubMed Kaipainen, A., Kieran, M. W., Huang, S., Butterfield, C., Bielenberg, D., Mostoslavsky, G., et al. (2007). PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS ONE, 2, e260.PubMed
45.
go back to reference Cui, Z., Willingham, M. C., Hicks, A. M., Alexander-Miller, M. A., Howard, T. D., Hawkins, G. A., et al. (2003). Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 6682–6687.PubMed Cui, Z., Willingham, M. C., Hicks, A. M., Alexander-Miller, M. A., Howard, T. D., Hawkins, G. A., et al. (2003). Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 6682–6687.PubMed
46.
go back to reference Hicks, A. M., Riedlinger, G., Willingham, M. C., Alexander-Miller, M. A., Von Kap-Herr, C., Pettenati, M. J., et al. (2006). Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7753–7758.PubMed Hicks, A. M., Riedlinger, G., Willingham, M. C., Alexander-Miller, M. A., Von Kap-Herr, C., Pettenati, M. J., et al. (2006). Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7753–7758.PubMed
47.
go back to reference Hicks, A. M., Willingham, M. C., Du, W., Pang, C. S., Old, L. J., & Cui, Z. (2006). Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice. Cancer Immunity, 6, 11.PubMed Hicks, A. M., Willingham, M. C., Du, W., Pang, C. S., Old, L. J., & Cui, Z. (2006). Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice. Cancer Immunity, 6, 11.PubMed
48.
go back to reference Donà, M., Dell’Aica, I., Calabrese, F., Benelli, R., Morini, M., Albini, A., et al. (2003). Neutrophil restraint by green tea: Inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. Journal of Immunology, 170, 4335–4341. Donà, M., Dell’Aica, I., Calabrese, F., Benelli, R., Morini, M., Albini, A., et al. (2003). Neutrophil restraint by green tea: Inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. Journal of Immunology, 170, 4335–4341.
49.
go back to reference Dell’Aica, I., Niero, R., Piazza, F., Cabrelle, A., Sartor, L., Colalto, C., et al. (2007). Hyperforin blocks neutrophil activation of matrix metalloproteinase-9, motility and recruitment, and restrains inflammation-triggered angiogenesis and lung fibrosis. Journal of Pharmacology and Experimental Therapeutics, 321, 492–500.PubMed Dell’Aica, I., Niero, R., Piazza, F., Cabrelle, A., Sartor, L., Colalto, C., et al. (2007). Hyperforin blocks neutrophil activation of matrix metalloproteinase-9, motility and recruitment, and restrains inflammation-triggered angiogenesis and lung fibrosis. Journal of Pharmacology and Experimental Therapeutics, 321, 492–500.PubMed
50.
go back to reference Dell’Aica, I., Sartor, L., Galletti, P., Giacomini, D., Quintavalla, A., Calabrese, F., et al. (2006). Inhibition of leukocyte elastase, polymorphonuclear chemoinvasion, and inflammation-triggered pulmonary fibrosis by a 4-alkyliden-beta-lactam with a galloyl moiety. Journal of Pharmacology and Experimental Therapeutics, 316, 539–546.PubMed Dell’Aica, I., Sartor, L., Galletti, P., Giacomini, D., Quintavalla, A., Calabrese, F., et al. (2006). Inhibition of leukocyte elastase, polymorphonuclear chemoinvasion, and inflammation-triggered pulmonary fibrosis by a 4-alkyliden-beta-lactam with a galloyl moiety. Journal of Pharmacology and Experimental Therapeutics, 316, 539–546.PubMed
51.
go back to reference O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79, 315–328.PubMed O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79, 315–328.PubMed
52.
go back to reference Benelli, R., Morini, M., Brigati, C., Noonan, D. M., & Albini, A. (2003). Angiostatin inhibits extracellular HIV-Tat-induced inflammatory angiogenesis. International Journal of Oncology, 22, 87–91.PubMed Benelli, R., Morini, M., Brigati, C., Noonan, D. M., & Albini, A. (2003). Angiostatin inhibits extracellular HIV-Tat-induced inflammatory angiogenesis. International Journal of Oncology, 22, 87–91.PubMed
53.
go back to reference Chavakis, T., Athanasopoulos, A., Rhee, J. S., Orlova, V., Schmidt-Woll, T., Bierhaus, A., et al. (2005). Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood, 105, 1036–1043.PubMed Chavakis, T., Athanasopoulos, A., Rhee, J. S., Orlova, V., Schmidt-Woll, T., Bierhaus, A., et al. (2005). Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood, 105, 1036–1043.PubMed
54.
go back to reference Perri, S. R., Annabi, B., & Galipeau, J. (2007). Angiostatin inhibits monocyte/macrophage migration via disruption of actin cytoskeleton. FASEB Journal (in press). Perri, S. R., Annabi, B., & Galipeau, J. (2007). Angiostatin inhibits monocyte/macrophage migration via disruption of actin cytoskeleton. FASEB Journal (in press).
55.
go back to reference Perri, S. R., Nalbantoglu, J., Annabi, B., Koty, Z., Lejeune, L., Francois, M., et al. (2005). Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Research, 65, 8359–8365.PubMed Perri, S. R., Nalbantoglu, J., Annabi, B., Koty, Z., Lejeune, L., Francois, M., et al. (2005). Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Research, 65, 8359–8365.PubMed
56.
go back to reference Albini, A., Noonan, D. M., & Ferrari, N. (2007). Molecular pathways for cancer angioprevention. Clinical Cancer Research, 13, 4320–4325.PubMed Albini, A., Noonan, D. M., & Ferrari, N. (2007). Molecular pathways for cancer angioprevention. Clinical Cancer Research, 13, 4320–4325.PubMed
57.
go back to reference Albini, A., & Sporn, M. B. (2007). The tumour microenvironment as a target for chemoprevention. Nature Reviews. Cancer, 7, 139–147.PubMed Albini, A., & Sporn, M. B. (2007). The tumour microenvironment as a target for chemoprevention. Nature Reviews. Cancer, 7, 139–147.PubMed
58.
go back to reference Noonan, D. M., Benelli, R., & Albini, A. (2007). Angiogenesis and cancer prevention: A vision. Recent Results in Cancer Research, 174, 219–224.PubMed Noonan, D. M., Benelli, R., & Albini, A. (2007). Angiogenesis and cancer prevention: A vision. Recent Results in Cancer Research, 174, 219–224.PubMed
59.
go back to reference Albini, A., Tosetti, F., Benelli, R., & Noonan, D. M. (2005). Tumor inflammatory angiogenesis and its chemoprevention. Cancer Research, 65, 10637–10641.PubMed Albini, A., Tosetti, F., Benelli, R., & Noonan, D. M. (2005). Tumor inflammatory angiogenesis and its chemoprevention. Cancer Research, 65, 10637–10641.PubMed
60.
go back to reference Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–436.PubMed Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–436.PubMed
61.
go back to reference Goebel, S., Huang, M., Davis, W. C., Jennings, M., Siahaan, T. J., Alexander, J. S., et al. (2006). VEGF-A stimulation of leukocyte adhesion to colonic microvascular endothelium: Implications for inflammatory bowel disease. American Journal of Physiology: Gastrointestinal and Liver Physiology, 290, G648–G654.PubMed Goebel, S., Huang, M., Davis, W. C., Jennings, M., Siahaan, T. J., Alexander, J. S., et al. (2006). VEGF-A stimulation of leukocyte adhesion to colonic microvascular endothelium: Implications for inflammatory bowel disease. American Journal of Physiology: Gastrointestinal and Liver Physiology, 290, G648–G654.PubMed
62.
go back to reference Melder, R. J., Koenig, G. C., Munn, L. L., & Jain, R. K. (1996). Adhesion of activated natural killer cells to tumor necrosis factor-alpha-treated endothelium under physiological flow conditions. Natural Immunity, 15, 154–163.PubMed Melder, R. J., Koenig, G. C., Munn, L. L., & Jain, R. K. (1996). Adhesion of activated natural killer cells to tumor necrosis factor-alpha-treated endothelium under physiological flow conditions. Natural Immunity, 15, 154–163.PubMed
63.
go back to reference Ferrara, N. (1996). Natural killer cells, adhesion and tumor angiogenesis. Nature Medicine, 2, 971–972.PubMed Ferrara, N. (1996). Natural killer cells, adhesion and tumor angiogenesis. Nature Medicine, 2, 971–972.PubMed
64.
go back to reference Sgadari, C., Angiolillo, A. L., & Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87, 3877–3882.PubMed Sgadari, C., Angiolillo, A. L., & Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87, 3877–3882.PubMed
65.
go back to reference Yao, L., Sgadari, C., Furuke, K., Bloom, E. T., Teruya-Feldstein, J., & Tosato, G. (1999). Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 93, 1612–1621.PubMed Yao, L., Sgadari, C., Furuke, K., Bloom, E. T., Teruya-Feldstein, J., & Tosato, G. (1999). Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 93, 1612–1621.PubMed
66.
go back to reference Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., et al. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine, 12, 1065–1074.PubMed Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., et al. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine, 12, 1065–1074.PubMed
67.
go back to reference Chaouat, G., Ledee-Bataille, N., Chea, K. B., & Dubanchet, S. (2005). Cytokines and implantation. Chemical Immunology and Allergy, 88, 34–63.PubMedCrossRef Chaouat, G., Ledee-Bataille, N., Chea, K. B., & Dubanchet, S. (2005). Cytokines and implantation. Chemical Immunology and Allergy, 88, 34–63.PubMedCrossRef
68.
go back to reference Chaouat, G., Ledee-Bataille, N., & Dubanchet, S. (2007). Immune cells in uteroplacental tissues throughout pregnancy: A brief review. Reproductive Biomedicine Online, 14, 256–266.PubMedCrossRef Chaouat, G., Ledee-Bataille, N., & Dubanchet, S. (2007). Immune cells in uteroplacental tissues throughout pregnancy: A brief review. Reproductive Biomedicine Online, 14, 256–266.PubMedCrossRef
69.
go back to reference Coudert, J. D., Zimmer, J., Tomasello, E., Cebecauer, M., Colonna, M., Vivier, E., et al. (2005). Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood, 106, 1711–1717.PubMed Coudert, J. D., Zimmer, J., Tomasello, E., Cebecauer, M., Colonna, M., Vivier, E., et al. (2005). Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood, 106, 1711–1717.PubMed
70.
go back to reference Loza, M. J., Peters, S. P., Zangrilli, J. G., & Perussia, B. (2002). Distinction between IL-13+ and IFN-gamma+ natural killer cells and regulation of their pool size by IL-4. European Journal of Immunology, 32, 413–423.PubMed Loza, M. J., Peters, S. P., Zangrilli, J. G., & Perussia, B. (2002). Distinction between IL-13+ and IFN-gamma+ natural killer cells and regulation of their pool size by IL-4. European Journal of Immunology, 32, 413–423.PubMed
71.
go back to reference Marcenaro, E., Della Chiesa, M., Bellora, F., Parolini, S., Millo, R., Moretta, L., et al. (2005). IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors. Journal of Immunology, 174, 3992–3998. Marcenaro, E., Della Chiesa, M., Bellora, F., Parolini, S., Millo, R., Moretta, L., et al. (2005). IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors. Journal of Immunology, 174, 3992–3998.
72.
go back to reference Keskin, D. B., Allan, D. S., Rybalov, B., Andzelm, M. M., Stern, J. N., Kopcow, H. D., et al. (2007). TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 3378–3383.PubMed Keskin, D. B., Allan, D. S., Rybalov, B., Andzelm, M. M., Stern, J. N., Kopcow, H. D., et al. (2007). TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 3378–3383.PubMed
73.
go back to reference Carrega, P., Morandi, B., Costa, R., Frumento, G., Forte, G., Altavilla, G., et al. (2007). Natural killer cells infiltrating human non-small cell lung cancer are enriched in CD56brightCD16-cells and display an impaired capability to kill tumor cells. Cancer (in press). Carrega, P., Morandi, B., Costa, R., Frumento, G., Forte, G., Altavilla, G., et al. (2007). Natural killer cells infiltrating human non-small cell lung cancer are enriched in CD56brightCD16-cells and display an impaired capability to kill tumor cells. Cancer (in press).
74.
go back to reference Morini, M., Albini, A., Lorusso, G., Moelling, K., Lu, B., Cilli, M., et al. (2004). Prevention of angiogenesis by naked DNA IL-12 gene transfer: Angioprevention by immunogene therapy. Gene Therapy, 11, 284–291.PubMed Morini, M., Albini, A., Lorusso, G., Moelling, K., Lu, B., Cilli, M., et al. (2004). Prevention of angiogenesis by naked DNA IL-12 gene transfer: Angioprevention by immunogene therapy. Gene Therapy, 11, 284–291.PubMed
75.
go back to reference Shi, X., Cao, S., Mitsuhashi, M., Xiang, Z., & Ma, X. (2004). Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. Journal of Immunology, 172, 4111–4122. Shi, X., Cao, S., Mitsuhashi, M., Xiang, Z., & Ma, X. (2004). Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. Journal of Immunology, 172, 4111–4122.
76.
go back to reference Faggioli, F., Soldati, S., Scanziani, E., Cato, E. M., Adorni, F., Vezzoni, P., et al. (2007). Effects of IL-12 gene therapy on spontaneous transgenic and transplanted breast tumors. Breast Cancer Research and Treatment (in press). Faggioli, F., Soldati, S., Scanziani, E., Cato, E. M., Adorni, F., Vezzoni, P., et al. (2007). Effects of IL-12 gene therapy on spontaneous transgenic and transplanted breast tumors. Breast Cancer Research and Treatment (in press).
77.
go back to reference Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16, 53–65.PubMed Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16, 53–65.PubMed
78.
go back to reference Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116, 2777–2790.PubMed Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116, 2777–2790.PubMed
79.
go back to reference Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6, 409–421.PubMed Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6, 409–421.PubMed
80.
go back to reference Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 96, 3838–3846.PubMed Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 96, 3838–3846.PubMed
81.
go back to reference Song, X., Krelin, Y., Dvorkin, T., Bjorkdahl, O., Segal, S., Dinarello, C. A., et al. (2005). CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. Journal of Immunology, 175, 8200–8208. Song, X., Krelin, Y., Dvorkin, T., Bjorkdahl, O., Segal, S., Dinarello, C. A., et al. (2005). CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. Journal of Immunology, 175, 8200–8208.
82.
go back to reference Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of Immunology, 176, 284–290. Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of Immunology, 176, 284–290.
83.
go back to reference Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., et al. (2006). Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Research, 66, 9290–9298.PubMed Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., et al. (2006). Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Research, 66, 9290–9298.PubMed
84.
go back to reference O’Garra, A., & Vieira, P. (2004). Regulatory T cells and mechanisms of immune system control. Nature Medicine, 10, 801–805.PubMed O’Garra, A., & Vieira, P. (2004). Regulatory T cells and mechanisms of immune system control. Nature Medicine, 10, 801–805.PubMed
85.
go back to reference Marie, J. C., Letterio, J. J., Gavin, M., & Rudensky, A. Y. (2005). TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 201, 1061–1067.PubMed Marie, J. C., Letterio, J. J., Gavin, M., & Rudensky, A. Y. (2005). TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 201, 1061–1067.PubMed
86.
go back to reference Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66, 1123–1131.PubMed Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66, 1123–1131.PubMed
87.
go back to reference Qin, Z., & Blankenstein, T. (2000). CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity, 12, 677–686.PubMed Qin, Z., & Blankenstein, T. (2000). CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity, 12, 677–686.PubMed
88.
go back to reference Qin, Z., Schwartzkopff, J., Pradera, F., Kammertoens, T., Seliger, B., Pircher, H., et al. (2003). A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Research, 63, 4095–4100.PubMed Qin, Z., Schwartzkopff, J., Pradera, F., Kammertoens, T., Seliger, B., Pircher, H., et al. (2003). A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Research, 63, 4095–4100.PubMed
89.
go back to reference Gupta, S., Joshi, K., Wig, J. D., & Arora, S. K. (2007). Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta Oncológica, 46, 792–797.PubMed Gupta, S., Joshi, K., Wig, J. D., & Arora, S. K. (2007). Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta Oncológica, 46, 792–797.PubMed
90.
go back to reference Degli-Esposti, M. A., & Smyth, M. J. (2005). Close encounters of different kinds: Dendritic cells and NK cells take centre stage. Nature Reviews. Immunology, 5, 112–124.PubMed Degli-Esposti, M. A., & Smyth, M. J. (2005). Close encounters of different kinds: Dendritic cells and NK cells take centre stage. Nature Reviews. Immunology, 5, 112–124.PubMed
91.
go back to reference Ludwig, I. S., Geijtenbeek, T. B., & van Kooyk, Y. (2006). Two way communication between neutrophils and dendritic cells. Current Opinion in Pharmacology, 6, 408–413.PubMed Ludwig, I. S., Geijtenbeek, T. B., & van Kooyk, Y. (2006). Two way communication between neutrophils and dendritic cells. Current Opinion in Pharmacology, 6, 408–413.PubMed
92.
go back to reference Tettamanti, G., Malagoli, D., Benelli, R., Albini, A., Grimaldi, A., Perletti, G., et al. (2006). Growth factors and chemokines: A comparative functional approach between invertebrates and vertebrates. Current Medicinal Chemistry, 13, 2737–2750.PubMed Tettamanti, G., Malagoli, D., Benelli, R., Albini, A., Grimaldi, A., Perletti, G., et al. (2006). Growth factors and chemokines: A comparative functional approach between invertebrates and vertebrates. Current Medicinal Chemistry, 13, 2737–2750.PubMed
93.
go back to reference Sozzani, S., Rusnati, M., Riboldi, E., Mitola, S., & Presta, M. (2007). Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends in Immunology, 28, 385–392. Sozzani, S., Rusnati, M., Riboldi, E., Mitola, S., & Presta, M. (2007). Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends in Immunology, 28, 385–392.
94.
go back to reference Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2, 1096–1103.PubMed Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2, 1096–1103.PubMed
95.
go back to reference Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.PubMed Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.PubMed
96.
go back to reference Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174, 215–222. Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174, 215–222.
97.
go back to reference Laxmanan, S., Robertson, S. W., Wang, E., Lau, J. S., Briscoe, D. M., & Mukhopadhyay, D. (2005). Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochemical and Biophysical Research Communications, 334, 193–198.PubMed Laxmanan, S., Robertson, S. W., Wang, E., Lau, J. S., Briscoe, D. M., & Mukhopadhyay, D. (2005). Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochemical and Biophysical Research Communications, 334, 193–198.PubMed
98.
go back to reference Okunishi, K., Dohi, M., Nakagome, K., Tanaka, R., Mizuno, S., Matsumoto, K., et al. (2005). A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. Journal of Immunology, 175, 4745–4753. Okunishi, K., Dohi, M., Nakagome, K., Tanaka, R., Mizuno, S., Matsumoto, K., et al. (2005). A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. Journal of Immunology, 175, 4745–4753.
99.
go back to reference Marteau, F., Gonzalez, N. S., Communi, D., Goldman, M., Boeynaems, J. M., & Communi, D. (2005). Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood, 106, 3860–3866.PubMed Marteau, F., Gonzalez, N. S., Communi, D., Goldman, M., Boeynaems, J. M., & Communi, D. (2005). Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood, 106, 3860–3866.PubMed
100.
go back to reference Xia, C. Q., & Kao, K. J. (2003). Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells. International Immunology, 15, 1007–1015.PubMed Xia, C. Q., & Kao, K. J. (2003). Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells. International Immunology, 15, 1007–1015.PubMed
101.
go back to reference Shellenberger, T. D., Wang, M., Gujrati, M., Jayakumar, A., Strieter, R. M., Burdick, M. D., et al. (2004). BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Research, 64, 8262–8270.PubMed Shellenberger, T. D., Wang, M., Gujrati, M., Jayakumar, A., Strieter, R. M., Burdick, M. D., et al. (2004). BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Research, 64, 8262–8270.PubMed
102.
go back to reference Renkl, A. C., Wussler, J., Ahrens, T., Thoma, K., Kon, S., Uede, T., et al. (2005). Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood, 106, 946–955.PubMed Renkl, A. C., Wussler, J., Ahrens, T., Thoma, K., Kon, S., Uede, T., et al. (2005). Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood, 106, 946–955.PubMed
103.
go back to reference Shinohara, M. L., Lu, L., Bu, J., Werneck, M. B., Kobayashi, K. S., Glimcher, L. H., et al. (2006). Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nature Immunology, 7, 498–506.PubMed Shinohara, M. L., Lu, L., Bu, J., Werneck, M. B., Kobayashi, K. S., Glimcher, L. H., et al. (2006). Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nature Immunology, 7, 498–506.PubMed
104.
go back to reference Weiss, J. M., Renkl, A. C., Maier, C. S., Kimmig, M., Liaw, L., Ahrens, T., et al. (2001). Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. Journal of Experimental Medicine, 194, 1219–1229.PubMed Weiss, J. M., Renkl, A. C., Maier, C. S., Kimmig, M., Liaw, L., Ahrens, T., et al. (2001). Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. Journal of Experimental Medicine, 194, 1219–1229.PubMed
105.
go back to reference Riboldi, E., Musso, T., Moroni, E., Urbinati, C., Bernasconi, S., Rusnati, M., et al. (2005). Cutting edge: Proangiogenic properties of alternatively activated dendritic cells. Journal of Immunology, 175, 2788–2792. Riboldi, E., Musso, T., Moroni, E., Urbinati, C., Bernasconi, S., Rusnati, M., et al. (2005). Cutting edge: Proangiogenic properties of alternatively activated dendritic cells. Journal of Immunology, 175, 2788–2792.
106.
go back to reference Geissmann, F., Revy, P., Brousse, N., Lepelletier, Y., Folli, C., Durandy, A., et al. (2003). Retinoids regulate survival and antigen presentation by immature dendritic cells. Journal of Experimental Medicine, 198, 623–634.PubMed Geissmann, F., Revy, P., Brousse, N., Lepelletier, Y., Folli, C., Durandy, A., et al. (2003). Retinoids regulate survival and antigen presentation by immature dendritic cells. Journal of Experimental Medicine, 198, 623–634.PubMed
107.
go back to reference Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., et al. (2004). Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Research, 64, 5535–5538.PubMed Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., et al. (2004). Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Research, 64, 5535–5538.PubMed
108.
go back to reference Bourbie-Vaudaine, S., Blanchard, N., Hivroz, C., & Romeo, P. H. (2006). Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. Journal of Immunology, 177, 1460–1469. Bourbie-Vaudaine, S., Blanchard, N., Hivroz, C., & Romeo, P. H. (2006). Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. Journal of Immunology, 177, 1460–1469.
109.
go back to reference Coukos, G., Benencia, F., Buckanovich, R. J., & Conejo-Garcia, J. R. (2005). The role of dendritic cell precursors in tumour vasculogenesis. British Journal of Cancer, 92, 1182–1187.PubMed Coukos, G., Benencia, F., Buckanovich, R. J., & Conejo-Garcia, J. R. (2005). The role of dendritic cell precursors in tumour vasculogenesis. British Journal of Cancer, 92, 1182–1187.PubMed
110.
go back to reference De Palma, M., & Naldini, L. (2006). Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochimica et Biophysica Acta, 1766, 159–166.PubMed De Palma, M., & Naldini, L. (2006). Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochimica et Biophysica Acta, 1766, 159–166.PubMed
111.
go back to reference Morelli, A. E., & Thomson, A. W. (2007). Tolerogenic dendritic cells and the quest for transplant tolerance. Nature Reviews. Immunology, 7, 610–621.PubMed Morelli, A. E., & Thomson, A. W. (2007). Tolerogenic dendritic cells and the quest for transplant tolerance. Nature Reviews. Immunology, 7, 610–621.PubMed
112.
go back to reference Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews. Immunology, 4, 478–485.PubMed Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews. Immunology, 4, 478–485.PubMed
113.
go back to reference Hooper, L. V., Stappenbeck, T. S., Hong, C. V., & Gordon, J. I. (2003). Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nature Immunology, 4, 269–273.PubMed Hooper, L. V., Stappenbeck, T. S., Hong, C. V., & Gordon, J. I. (2003). Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nature Immunology, 4, 269–273.PubMed
Metadata
Title
Inflammation, inflammatory cells and angiogenesis: decisions and indecisions
Authors
Douglas M. Noonan
Andrea De Lerma Barbaro
Nicola Vannini
Lorenzo Mortara
Adriana Albini
Publication date
01-03-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-007-9108-5

Other articles of this Issue 1/2008

Cancer and Metastasis Reviews 1/2008 Go to the issue

Acknowledgments

Bio

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine