Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2008

01-03-2008

Immune cells as mediators of solid tumor metastasis

Authors: David G. DeNardo, Magnus Johansson, Lisa M. Coussens

Published in: Cancer and Metastasis Reviews | Issue 1/2008

Login to get access

Abstract

Outgrowths of disseminated metastases remain the primary cause of mortality in cancer patients; however, molecular and cellular mechanisms regulating metastatic spread remain largely elusive. Recent insights into these mechanisms have refined the seed and soil hypothesis and it is now recognized that metastasis of solid tumors requires collaborative interactions between malignant cells and a diverse assortment of “activated” stromal cells at both primary and secondary tumor locations. Specifically, persistent pro-tumor immune responses (inflammation), now generally accepted as potentiating primary tumor development, are also being recognized as mediators of cancer metastasis. Thus, novel anti-cancer therapeutic strategies targeting molecular and/or cellular mechanisms regulating these collaborative interactions may provide efficacious relief for metastatic disease. This review focuses on recent literature revealing new mechanisms whereby immune cells regulate metastatic progression, with a primary focus on breast cancer.
Literature
1.
go back to reference Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics. CA A Cancer Journal for Clinicians, 57, 43–66 2007.PubMedCrossRef Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics. CA A Cancer Journal for Clinicians, 57, 43–66 2007.PubMedCrossRef
2.
go back to reference Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRef Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRef
3.
go back to reference Karin, M., & Greten, F. R. (2005). NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5, 749–759.PubMedCrossRef Karin, M., & Greten, F. R. (2005). NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5, 749–759.PubMedCrossRef
4.
go back to reference Coussens, L. M., & Werb, Z. (2001). Inflammatory cells and cancer: Think different!. Journal of Experimental Medicine, 193, F23–F26.PubMedCrossRef Coussens, L. M., & Werb, Z. (2001). Inflammatory cells and cancer: Think different!. Journal of Experimental Medicine, 193, F23–F26.PubMedCrossRef
6.
7.
go back to reference Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.PubMedCrossRef Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.PubMedCrossRef
8.
go back to reference Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMedCrossRef Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMedCrossRef
9.
go back to reference de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6, 24–37.PubMedCrossRef de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6, 24–37.PubMedCrossRef
10.
go back to reference Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.PubMedCrossRef Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.PubMedCrossRef
11.
go back to reference Chambers, A. F., Naumov, G. N., Varghese, H. J., Nadkarni, K. V., MacDonald, I. C., & Groom, A. C. (2001). Critical steps in hematogenous metastasis: An overview. Surgical Oncology Clinics of North America, 10, 243–255 vii.PubMed Chambers, A. F., Naumov, G. N., Varghese, H. J., Nadkarni, K. V., MacDonald, I. C., & Groom, A. C. (2001). Critical steps in hematogenous metastasis: An overview. Surgical Oncology Clinics of North America, 10, 243–255 vii.PubMed
12.
go back to reference Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.PubMed Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.PubMed
13.
go back to reference Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.PubMedCrossRef Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.PubMedCrossRef
15.
go back to reference Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMedCrossRef Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMedCrossRef
16.
go back to reference Wilson, J., & Balkwill, F. (2002). The role of cytokines in the epithelial cancer microenvironment. Seminars in Cancer Biology, 12, 113–120.PubMedCrossRef Wilson, J., & Balkwill, F. (2002). The role of cytokines in the epithelial cancer microenvironment. Seminars in Cancer Biology, 12, 113–120.PubMedCrossRef
17.
go back to reference Borsig, L., Wong, R., Hynes, R. O., Varki, N. M., & Varki, A. (2002). Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proceedings of the National Academy of Sciences of the United States of America, 99, 2193–2198.PubMedCrossRef Borsig, L., Wong, R., Hynes, R. O., Varki, N. M., & Varki, A. (2002). Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proceedings of the National Academy of Sciences of the United States of America, 99, 2193–2198.PubMedCrossRef
18.
go back to reference Laakkonen, P., Porkka, K., Hoffman, J. A., & Ruoslahti, E. (2002). A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Medicine, 8, 751–755. Laakkonen, P., Porkka, K., Hoffman, J. A., & Ruoslahti, E. (2002). A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Medicine, 8, 751–755.
19.
go back to reference Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell, 124, 823–835.PubMedCrossRef Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell, 124, 823–835.PubMedCrossRef
20.
go back to reference Wu, J., & Lanier, L. L. (2003). Natural killer cells and cancer. Advances in Cancer Research, 90, 127–156.PubMed Wu, J., & Lanier, L. L. (2003). Natural killer cells and cancer. Advances in Cancer Research, 90, 127–156.PubMed
21.
go back to reference Theoharides, T. C., & Conti, P. (2004). Mast cells: The Jekyll and Hyde of tumor growth. Trends in Immunology, 25, 235–241.PubMedCrossRef Theoharides, T. C., & Conti, P. (2004). Mast cells: The Jekyll and Hyde of tumor growth. Trends in Immunology, 25, 235–241.PubMedCrossRef
22.
go back to reference Condeelis, J., & Pollard, J. W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.PubMedCrossRef Condeelis, J., & Pollard, J. W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.PubMedCrossRef
23.
go back to reference Mantovani, A., Allavena, P., & Sica, A. (2004). Tumour-associated macrophages as a prototypic type II polarised phagocyte population: Role in tumour progression. European Journal of Cancer, 40, 1660–1667.PubMedCrossRef Mantovani, A., Allavena, P., & Sica, A. (2004). Tumour-associated macrophages as a prototypic type II polarised phagocyte population: Role in tumour progression. European Journal of Cancer, 40, 1660–1667.PubMedCrossRef
24.
go back to reference Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65, 5278–5283.PubMedCrossRef Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65, 5278–5283.PubMedCrossRef
25.
go back to reference Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.PubMedCrossRef Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.PubMedCrossRef
26.
go back to reference Bergers, G., & Benjamin, L. E. (2003). Angiogenesis: Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3, 401–410.PubMedCrossRef Bergers, G., & Benjamin, L. E. (2003). Angiogenesis: Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3, 401–410.PubMedCrossRef
27.
go back to reference Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67, 2649–2656.PubMedCrossRef Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67, 2649–2656.PubMedCrossRef
28.
go back to reference Lee, T. H., Seng, S., Sekine, M., Hinton, C., Fu, Y., Avraham, H. K., et al. (2007). Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Medicine, 4, e186.PubMedCrossRef Lee, T. H., Seng, S., Sekine, M., Hinton, C., Fu, Y., Avraham, H. K., et al. (2007). Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Medicine, 4, e186.PubMedCrossRef
29.
go back to reference Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–744.PubMedCrossRef Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–744.PubMedCrossRef
30.
go back to reference Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13, 1382–1397. Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13, 1382–1397.
31.
go back to reference Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67, 5064–5066.PubMedCrossRef Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67, 5064–5066.PubMedCrossRef
32.
go back to reference Robinson-Smith, T. M., Isaacsohn, I., Mercer, C. A., Zhou, M., Van Rooijen, N., Husseinzadeh, N., et al. (2007). Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Research, 67, 5708–5716.PubMedCrossRef Robinson-Smith, T. M., Isaacsohn, I., Mercer, C. A., Zhou, M., Van Rooijen, N., Husseinzadeh, N., et al. (2007). Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Research, 67, 5708–5716.PubMedCrossRef
33.
go back to reference Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.PubMed Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.PubMed
34.
go back to reference Lin, E. Y., Gouon-Evans, V., Nguyen, A. V., & Pollard, J. W. (2002). The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 7, 147–162.PubMedCrossRef Lin, E. Y., Gouon-Evans, V., Nguyen, A. V., & Pollard, J. W. (2002). The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 7, 147–162.PubMedCrossRef
35.
go back to reference Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66, 11238–11246.PubMedCrossRef Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66, 11238–11246.PubMedCrossRef
36.
go back to reference O’Sullivan, C., & Lewis, C. E. (1994). Tumour-associated leucocytes: Friends or foes in breast carcinoma. Journal of Pathology, 172, 229–235.PubMedCrossRef O’Sullivan, C., & Lewis, C. E. (1994). Tumour-associated leucocytes: Friends or foes in breast carcinoma. Journal of Pathology, 172, 229–235.PubMedCrossRef
37.
go back to reference Leek, R. D., & Harris, A. L. (2002). Tumor-associated macrophages in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 177–189.PubMedCrossRef Leek, R. D., & Harris, A. L. (2002). Tumor-associated macrophages in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 177–189.PubMedCrossRef
38.
go back to reference Bolat, F., Kayaselcuk, F., Nursal, T. Z., Yagmurdur, M. C., Bal, N., & Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: Correlations with prognostic parameters. Journal of Experimental & Clinical Cancer Research, 25, 365–372. Bolat, F., Kayaselcuk, F., Nursal, T. Z., Yagmurdur, M. C., Bal, N., & Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: Correlations with prognostic parameters. Journal of Experimental & Clinical Cancer Research, 25, 365–372.
39.
go back to reference Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., & Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncology Reports, 14, 425–431.PubMed Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., & Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncology Reports, 14, 425–431.PubMed
40.
go back to reference Ohno, S., Ohno, Y., Suzuki, N., Kamei, T., Koike, K., Inagawa, H., et al. (2004). Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Research, 24, 3335–3342.PubMed Ohno, S., Ohno, Y., Suzuki, N., Kamei, T., Koike, K., Inagawa, H., et al. (2004). Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Research, 24, 3335–3342.PubMed
41.
go back to reference Oosterling, S. J., van der Bij, G. J., Meijer, G. A., Tuk, C. W., van Garderen, E., van Rooijen, N., et al. (2005). Macrophages direct tumour histology and clinical outcome in a colon cancer model. Journal of Pathology, 207, 147–155.PubMedCrossRef Oosterling, S. J., van der Bij, G. J., Meijer, G. A., Tuk, C. W., van Garderen, E., van Rooijen, N., et al. (2005). Macrophages direct tumour histology and clinical outcome in a colon cancer model. Journal of Pathology, 207, 147–155.PubMedCrossRef
42.
go back to reference Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.PubMedCrossRef Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.PubMedCrossRef
43.
go back to reference Ribatti, D., Crivellato, E., Roccaro, A. M., Ria, R., & Vacca, A. (2004). Mast cell contribution to angiogenesis related to tumour progression. Clinical & Experimental Allergy, 34, 1660–1664.CrossRef Ribatti, D., Crivellato, E., Roccaro, A. M., Ria, R., & Vacca, A. (2004). Mast cell contribution to angiogenesis related to tumour progression. Clinical & Experimental Allergy, 34, 1660–1664.CrossRef
44.
go back to reference Ribatti, D., Vacca, A., Nico, B., Crivellato, E., Roncali, L., & Dammacco, F. (2001). The role of mast cells in tumour angiogenesis. British Journal of Haematology, 115, 514–521.PubMedCrossRef Ribatti, D., Vacca, A., Nico, B., Crivellato, E., Roncali, L., & Dammacco, F. (2001). The role of mast cells in tumour angiogenesis. British Journal of Haematology, 115, 514–521.PubMedCrossRef
45.
go back to reference Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: Potential initiators of the angiogenic cascade. Chemical Immunology and Allergy, 83, 167–181.PubMed Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: Potential initiators of the angiogenic cascade. Chemical Immunology and Allergy, 83, 167–181.PubMed
46.
go back to reference Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67, 4507–4513.PubMedCrossRef Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67, 4507–4513.PubMedCrossRef
47.
go back to reference De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8, 211–226.PubMedCrossRef De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8, 211–226.PubMedCrossRef
48.
go back to reference Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of Immunology, 176, 284–290. Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of Immunology, 176, 284–290.
49.
go back to reference Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.PubMedCrossRef Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.PubMedCrossRef
50.
go back to reference Mueller, M. M., & Fusenig, N. E. (2004). Friends or foes—Bipolar effects of the tumour stroma in cancer. Nature Reviews. Cancer, 4, 839–849.PubMedCrossRef Mueller, M. M., & Fusenig, N. E. (2004). Friends or foes—Bipolar effects of the tumour stroma in cancer. Nature Reviews. Cancer, 4, 839–849.PubMedCrossRef
51.
go back to reference Joyce, J. A., & Hanahan, D. (2004). Multiple roles for cysteine cathepsins in cancer. Cell Cycle, 3, 1516–1619.PubMed Joyce, J. A., & Hanahan, D. (2004). Multiple roles for cysteine cathepsins in cancer. Cell Cycle, 3, 1516–1619.PubMed
52.
go back to reference Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., & Quaranta, V. (1997). Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science, 277, 225–228.PubMedCrossRef Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., & Quaranta, V. (1997). Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science, 277, 225–228.PubMedCrossRef
53.
go back to reference Pirila, E., Ramamurthy, N. S., Sorsa, T., Salo, T., Hietanen, J., & Maisi, P. (2003). Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression in murine inflammatory bowel disease (ulcerative colitis). Digestive Diseases and Sciences, 48, 93–98.PubMedCrossRef Pirila, E., Ramamurthy, N. S., Sorsa, T., Salo, T., Hietanen, J., & Maisi, P. (2003). Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression in murine inflammatory bowel disease (ulcerative colitis). Digestive Diseases and Sciences, 48, 93–98.PubMedCrossRef
54.
go back to reference Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3, 422–433.PubMedCrossRef Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3, 422–433.PubMedCrossRef
55.
go back to reference van Kempen, L. C., de Visser, K. E., & Coussens, L. M. (2006). Inflammation, proteases and cancer. European Journal of Cancer, 42, 728–734.PubMedCrossRef van Kempen, L. C., de Visser, K. E., & Coussens, L. M. (2006). Inflammation, proteases and cancer. European Journal of Cancer, 42, 728–734.PubMedCrossRef
56.
go back to reference Cheng, K., Xie, G., & Raufman, J. P. (2007). Matrix metalloproteinase-7-catalyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochemical Pharmacology, 73, 1001–1012.PubMedCrossRef Cheng, K., Xie, G., & Raufman, J. P. (2007). Matrix metalloproteinase-7-catalyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochemical Pharmacology, 73, 1001–1012.PubMedCrossRef
57.
go back to reference Wang, F., Sloss, C., Zhang, X., Lee, S. W., & Cusack, J. C. (2007). Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Research, 67, 8486–8493.PubMedCrossRef Wang, F., Sloss, C., Zhang, X., Lee, S. W., & Cusack, J. C. (2007). Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Research, 67, 8486–8493.PubMedCrossRef
58.
go back to reference Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., et al. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes & Development, 20, 543–556.CrossRef Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., et al. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes & Development, 20, 543–556.CrossRef
59.
go back to reference Vasiljeva, O., Papazoglou, A., Kruger, A., Brodoefel, H., Korovin, M., Deussing, J., et al. (2006). Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Research, 66, 5242–5250.PubMedCrossRef Vasiljeva, O., Papazoglou, A., Kruger, A., Brodoefel, H., Korovin, M., Deussing, J., et al. (2006). Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Research, 66, 5242–5250.PubMedCrossRef
60.
go back to reference Lin, E. Y., Jones, J. G., Li, P., Zhu, L., Whitney, K. D., Muller, W. J., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.PubMed Lin, E. Y., Jones, J. G., Li, P., Zhu, L., Whitney, K. D., Muller, W. J., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.PubMed
61.
go back to reference Hagemann, T., Wilson, J., Kulbe, H., Li, N. F., Leinster, D. A., Charles, K., et al. (2005). Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. Journal of Immunology, 175, 1197–1205. Hagemann, T., Wilson, J., Kulbe, H., Li, N. F., Leinster, D. A., Charles, K., et al. (2005). Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. Journal of Immunology, 175, 1197–1205.
62.
go back to reference Scott, K. A., Arnott, C. H., Robinson, S. C., Moore, R. J., Thompson, R. G., Marshall, J. F., et al. (2004). TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during tumour promotion. A role for TNF-alpha in keratinocyte migration? Oncogene, 23, 6954–6966.PubMedCrossRef Scott, K. A., Arnott, C. H., Robinson, S. C., Moore, R. J., Thompson, R. G., Marshall, J. F., et al. (2004). TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during tumour promotion. A role for TNF-alpha in keratinocyte migration? Oncogene, 23, 6954–6966.PubMedCrossRef
63.
go back to reference Szlosarek, P. W., Grimshaw, M. J., Kulbe, H., Wilson, J. L., Wilbanks, G. D., Burke, F., et al. (2006). Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Molecular Cancer Therapeutics, 5, 382–390.PubMedCrossRef Szlosarek, P. W., Grimshaw, M. J., Kulbe, H., Wilson, J. L., Wilbanks, G. D., Burke, F., et al. (2006). Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Molecular Cancer Therapeutics, 5, 382–390.PubMedCrossRef
64.
go back to reference Szlosarek, P., Charles, K. A., & Balkwill, F. R. (2006). Tumour necrosis factor-alpha as a tumour promoter. European Journal of Cancer, 42, 745–750.PubMedCrossRef Szlosarek, P., Charles, K. A., & Balkwill, F. R. (2006). Tumour necrosis factor-alpha as a tumour promoter. European Journal of Cancer, 42, 745–750.PubMedCrossRef
65.
go back to reference Luo, J. L., Tan, W., Ricono, J. M., Korchynskyi, O., Zhang, M., Gonias, S. L., et al. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature, 446, 690–694.PubMedCrossRef Luo, J. L., Tan, W., Ricono, J. M., Korchynskyi, O., Zhang, M., Gonias, S. L., et al. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature, 446, 690–694.PubMedCrossRef
66.
go back to reference Abraham, S., Zhang, W., Greenberg, N., & Zhang, M. (2003). Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. Journal of Urology, 169, 1157–1161.PubMedCrossRef Abraham, S., Zhang, W., Greenberg, N., & Zhang, M. (2003). Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. Journal of Urology, 169, 1157–1161.PubMedCrossRef
67.
go back to reference Sager, R., Sheng, S., Pemberton, P., & Hendrix, M. J. (1997). Maspin. A tumor suppressing serpin. Advances in Experimental Medicine and Biology, 425, 77–88.PubMed Sager, R., Sheng, S., Pemberton, P., & Hendrix, M. J. (1997). Maspin. A tumor suppressing serpin. Advances in Experimental Medicine and Biology, 425, 77–88.PubMed
68.
go back to reference Chen, E. I., & Yates, J. R. (2006). Maspin and tumor metastasis. IUMB Life, 58, 25–29.CrossRef Chen, E. I., & Yates, J. R. (2006). Maspin and tumor metastasis. IUMB Life, 58, 25–29.CrossRef
69.
go back to reference Jones, D. H., Nakashima, T., Sanchez, O. H., Kozieradzki, I., Komarova, S. V., Sarosi, I., et al. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 440, 692–696.PubMedCrossRef Jones, D. H., Nakashima, T., Sanchez, O. H., Kozieradzki, I., Komarova, S. V., Sarosi, I., et al. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 440, 692–696.PubMedCrossRef
70.
go back to reference Shi, H. Y., Zhang, W., Liang, R., Kittrell, F., Templeton, N. S., Medina, D., et al. (2003). Modeling human breast cancer metastasis in mice: Maspin as a paradigm. Histology and Histopathology, 18, 201–206.PubMed Shi, H. Y., Zhang, W., Liang, R., Kittrell, F., Templeton, N. S., Medina, D., et al. (2003). Modeling human breast cancer metastasis in mice: Maspin as a paradigm. Histology and Histopathology, 18, 201–206.PubMed
71.
go back to reference Lockett, J., Yin, S., Li, X., Meng, Y., & Sheng, S. (2006). Tumor suppressive maspin and epithelial homeostasis. Journal of Cellular Biochemistry, 97, 651–660.PubMedCrossRef Lockett, J., Yin, S., Li, X., Meng, Y., & Sheng, S. (2006). Tumor suppressive maspin and epithelial homeostasis. Journal of Cellular Biochemistry, 97, 651–660.PubMedCrossRef
72.
go back to reference Gorden, D. L., Fingleton, B., Crawford, H. C., Jansen, D. E., Lepage, M., & Matrisian, L. M. (2007). Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. International Journal of Cancer, 121, 495–500.CrossRef Gorden, D. L., Fingleton, B., Crawford, H. C., Jansen, D. E., Lepage, M., & Matrisian, L. M. (2007). Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. International Journal of Cancer, 121, 495–500.CrossRef
73.
go back to reference Lynch, C. C., Hikosaka, A., Acuff, H. B., Martin, M. D., Kawai, N., Singh, R. K., et al. (2005). MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell, 7, 485–496.PubMedCrossRef Lynch, C. C., Hikosaka, A., Acuff, H. B., Martin, M. D., Kawai, N., Singh, R. K., et al. (2005). MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell, 7, 485–496.PubMedCrossRef
74.
go back to reference Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.PubMedCrossRef Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.PubMedCrossRef
75.
go back to reference Leek, R. D., Hunt, N. C., Landers, R. J., Lewis, C. E., Royds, J. A., & Harris, A. L. (2000). Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. Journal of Pathology, 190, 430–436.PubMedCrossRef Leek, R. D., Hunt, N. C., Landers, R. J., Lewis, C. E., Royds, J. A., & Harris, A. L. (2000). Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. Journal of Pathology, 190, 430–436.PubMedCrossRef
76.
go back to reference Wyckoff, J. B., Segall, J. E., & Condeelis, J. S. (2000). The collection of the motile population of cells from a living tumor. Cancer Research, 60, 5401–5404.PubMed Wyckoff, J. B., Segall, J. E., & Condeelis, J. S. (2000). The collection of the motile population of cells from a living tumor. Cancer Research, 60, 5401–5404.PubMed
77.
go back to reference Wang, W., Wyckoff, J. B., Goswami, S., Wang, Y., Sidani, M., Segall, J. E., et al. (2007). Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Research, 67, 3505–3511.PubMedCrossRef Wang, W., Wyckoff, J. B., Goswami, S., Wang, Y., Sidani, M., Segall, J. E., et al. (2007). Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Research, 67, 3505–3511.PubMedCrossRef
78.
go back to reference Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 3, 921–930.PubMedCrossRef Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 3, 921–930.PubMedCrossRef
79.
go back to reference Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., et al. (1998). Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMed Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., et al. (1998). Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMed
80.
go back to reference Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2, 289–300.PubMedCrossRef Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2, 289–300.PubMedCrossRef
81.
go back to reference Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66, 259–266.PubMedCrossRef Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66, 259–266.PubMedCrossRef
82.
go back to reference Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8, 1369–1375.PubMedCrossRef Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8, 1369–1375.PubMedCrossRef
83.
go back to reference Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–168 discussion 68–72, 259–69.PubMed Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–168 discussion 68–72, 259–69.PubMed
84.
go back to reference Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: Within bone and beyond. Cancer and Metastasis Reviews, 25, 521–529.PubMedCrossRef Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: Within bone and beyond. Cancer and Metastasis Reviews, 25, 521–529.PubMedCrossRef
85.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedCrossRef
86.
go back to reference Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295, 2387–2392.PubMedCrossRef Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295, 2387–2392.PubMedCrossRef
87.
go back to reference Psaty, B. M., & Furberg, C. D. (2005). COX-2 inhibitors—Lessons in drug safety. New England Journal of Medicine, 352, 1133–1135.PubMedCrossRef Psaty, B. M., & Furberg, C. D. (2005). COX-2 inhibitors—Lessons in drug safety. New England Journal of Medicine, 352, 1133–1135.PubMedCrossRef
Metadata
Title
Immune cells as mediators of solid tumor metastasis
Authors
David G. DeNardo
Magnus Johansson
Lisa M. Coussens
Publication date
01-03-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-007-9100-0

Other articles of this Issue 1/2008

Cancer and Metastasis Reviews 1/2008 Go to the issue

Acknowledgments

Bio

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine