Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 6/2012

01-08-2012 | Original Paper

Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography

Authors: Jinyong Ha, Hongki Yoo, Guillermo J. Tearney, Brett E. Bouma

Published in: The International Journal of Cardiovascular Imaging | Issue 6/2012

Login to get access

Abstract

Intracoronary optical coherence tomography and optical frequency domain imaging (OFDI) have been utilized for two-dimensional and three-dimensional imaging of vascular microanatomy. Image quality and the spatial accuracy of multidimensional reconstructions, however, can be degraded due to artifacts resulting from relative motion between the intracoronary catheter and the vessel wall. To track the relative motion of a catheter with regard to the vessel, a motion tracking system was incorporated with a standard OFDI system by using wavelength division multiplexing techniques. Motion of the vessel was acquired by a frequency shift of the backscattered light caused by the Doppler effect. A single monochromatic beam was utilized for tracking the relative longitudinal displacements of a catheter-based fiber probe with regard to the vessel. Although two tracking beams are, in general, required to correct for longitudinal motion artifacts, the accurate reconstruction in a longitudinal view was achieved by the Doppler frequency information of a single beam. Our results demonstrate that the single beam based motion tracking scheme is a cost-effective, practical approach to compensating for longitudinal distortions due to cardiac dynamics, thus leading to accurate quantitative analysis of 3D intracoronary OFDI.
Literature
1.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254:1178PubMedCrossRef Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254:1178PubMedCrossRef
2.
go back to reference Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung HK et al (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–609PubMedCrossRef Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung HK et al (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–609PubMedCrossRef
3.
go back to reference Yun SH, Tearney GJ, de Boer JF, Iftimia N, Bouma BE (2003) High-speed optical frequency-domain imaging. Opt Express 11:2953–2963PubMedCrossRef Yun SH, Tearney GJ, de Boer JF, Iftimia N, Bouma BE (2003) High-speed optical frequency-domain imaging. Opt Express 11:2953–2963PubMedCrossRef
4.
go back to reference Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189PubMedCrossRef Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189PubMedCrossRef
5.
go back to reference Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE et al (2006) Comprehensive volumetric optical microscopy in vivo. Nat Med 12:1429–1433PubMedCrossRef Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE et al (2006) Comprehensive volumetric optical microscopy in vivo. Nat Med 12:1429–1433PubMedCrossRef
6.
go back to reference Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI et al (2008) Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging 1:752–761PubMedCrossRef Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI et al (2008) Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging 1:752–761PubMedCrossRef
7.
go back to reference Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A et al (2010) Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv 75:202–206PubMedCrossRef Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A et al (2010) Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv 75:202–206PubMedCrossRef
8.
go back to reference Waxman S, Freilich MI, Suter MJ, Shishkov M, Bilazarian S, Virmani R et al (2010) A case of lipid core plaque progression and rupture at the edge of a coronary stent: elucidating the mechanisms of DES failure. Circ Cardiovasc Interv 3:193–196PubMedCrossRef Waxman S, Freilich MI, Suter MJ, Shishkov M, Bilazarian S, Virmani R et al (2010) A case of lipid core plaque progression and rupture at the edge of a coronary stent: elucidating the mechanisms of DES failure. Circ Cardiovasc Interv 3:193–196PubMedCrossRef
9.
go back to reference Ha JY, Shishkov M, Colice M, Oh WY, Yoo H, Liu L et al (2010) Compensation of motion artifacts in catheter-based optical frequency domain imaging. Opt Express 18:11418–11427PubMedCrossRef Ha JY, Shishkov M, Colice M, Oh WY, Yoo H, Liu L et al (2010) Compensation of motion artifacts in catheter-based optical frequency domain imaging. Opt Express 18:11418–11427PubMedCrossRef
Metadata
Title
Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography
Authors
Jinyong Ha
Hongki Yoo
Guillermo J. Tearney
Brett E. Bouma
Publication date
01-08-2012
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 6/2012
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-011-9953-8

Other articles of this Issue 6/2012

The International Journal of Cardiovascular Imaging 6/2012 Go to the issue

Case-in-Point

Atlantis Massif