Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2014

01-08-2014 | Preclinical study

Metabolic differences in breast cancer stem cells and differentiated progeny

Authors: Erina Vlashi, Chann Lagadec, Laurent Vergnes, Karen Reue, Patricia Frohnen, Mabel Chan, Yazeed Alhiyari, Milana Bochkur Dratver, Frank Pajonk

Published in: Breast Cancer Research and Treatment | Issue 3/2014

Login to get access

Abstract

In general, tumor cells display a more glycolytic phenotype compared to the corresponding normal tissue. However, it is becoming increasingly clear that tumors are composed of a heterogeneous population of cells. Breast cancers are organized in a hierarchical manner, with the breast cancer stem cells (BCSCs) at the top of the hierarchy. Here, we investigate the metabolic phenotype of BCSCs and their differentiated progeny. In addition, we determine the effect of radiation on the metabolic state of these two cell populations. Luminal, basal, and claudin-low breast cancer cell lines were propagated as mammospheres enriched in BCSCs. Lactate production, glucose consumption, and ATP content were compared with differentiated cultures. A metabolic flux analyzer was used to determine the oxygen consumption, extracellular acidification rates, maximal mitochondria capacity, and mitochondrial proton leak. The effect of radiation treatment of the metabolic phenotype of each cell population was also determined. BCSCs consume more glucose, produce less lactate, and have higher ATP content compared to their differentiated progeny. BCSCs have higher maximum mitochondrial capacity and mitochondrial proton leak compared to their differentiated progeny. Radiation treatment enhances the higher energetic state of the BCSCs, while decreasing mitochondrial proton leak. Our study indicated that breast cancer cells are heterogeneous in their metabolic phenotypes and BCSCs reside in a distinct metabolic state compared to their differentiated progeny. BCSCs display a reliance on oxidative phosphorylation, while the more differentiated progeny displays a more glycolytic phenotype. Radiation treatment affects the metabolic state of BCSCs. We conclude that interfering with the metabolic requirements of BCSCs may prevent radiation-induced reprogramming of breast cancer cells during radiation therapy, thus improving treatment outcome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Overgaard M, Jensen MB, Overgaard J, Hansen PS, Rose C, Andersson M, Kamby C, Kjaer M, Gadeberg CC, Rasmussen BB et al (1999) Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 353(9165):1641–1648PubMedCrossRef Overgaard M, Jensen MB, Overgaard J, Hansen PS, Rose C, Andersson M, Kamby C, Kjaer M, Gadeberg CC, Rasmussen BB et al (1999) Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 353(9165):1641–1648PubMedCrossRef
2.
go back to reference Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106PubMedCrossRef Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106PubMedCrossRef
3.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCentralPubMedCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCentralPubMedCrossRef
4.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRef Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRef
5.
go back to reference Warburg O, Posener K, Negelein E (1924) Ueber den Stoffwechsel der Tumoren. Biochem Z 152:319–344 Warburg O, Posener K, Negelein E (1924) Ueber den Stoffwechsel der Tumoren. Biochem Z 152:319–344
6.
go back to reference Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114(1):89–98PubMedCrossRef Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114(1):89–98PubMedCrossRef
7.
go back to reference Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K, Pajonk F (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast cancer Res 12(1):R13PubMedCentralPubMedCrossRef Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K, Pajonk F (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast cancer Res 12(1):R13PubMedCentralPubMedCrossRef
8.
go back to reference Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W, Pajonk F (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101(5):350–359PubMedCentralPubMedCrossRef Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W, Pajonk F (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101(5):350–359PubMedCentralPubMedCrossRef
9.
go back to reference Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–580PubMedCrossRef Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–580PubMedCrossRef
10.
go back to reference Amo T, Yadava N, Oh R, Nicholls DG, Brand MD (2008) Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene 411(1–2):69–76PubMedCentralPubMedCrossRef Amo T, Yadava N, Oh R, Nicholls DG, Brand MD (2008) Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene 411(1–2):69–76PubMedCentralPubMedCrossRef
11.
12.
go back to reference Lagadec C, Vlashi E, Alhiyari Y, Phillips TM, Dratver MB, Pajonk F (2013) Radiation-induced notch signaling in breast cancer stem cells. Int J Radiat Oncol Biol Phys 87(3):609PubMedCrossRef Lagadec C, Vlashi E, Alhiyari Y, Phillips TM, Dratver MB, Pajonk F (2013) Radiation-induced notch signaling in breast cancer stem cells. Int J Radiat Oncol Biol Phys 87(3):609PubMedCrossRef
13.
go back to reference Vlashi E, Lagadec C, Chan M, Frohnen P, McDonald AJ, Pajonk F (2013) Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression. Breast Cancer Res Treat 141(2):197–203PubMedCrossRef Vlashi E, Lagadec C, Chan M, Frohnen P, McDonald AJ, Pajonk F (2013) Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression. Breast Cancer Res Treat 141(2):197–203PubMedCrossRef
14.
go back to reference Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 109(8):2784–2789PubMedCentralPubMedCrossRef Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 109(8):2784–2789PubMedCentralPubMedCrossRef
15.
go back to reference Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511PubMedCrossRef Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511PubMedCrossRef
16.
go back to reference Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233PubMedCrossRef Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233PubMedCrossRef
17.
go back to reference Christofk HR, Vander Heiden MG, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184):181–186PubMedCrossRef Christofk HR, Vander Heiden MG, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184):181–186PubMedCrossRef
18.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRef
19.
go back to reference Moon JS, Kim HE, Koh E, Park SH, Jin WJ, Park BW, Park SW, Kim KS (2011) Kruppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer. J Biol Chem 286(27):23808–23816PubMedCentralPubMedCrossRef Moon JS, Kim HE, Koh E, Park SH, Jin WJ, Park BW, Park SW, Kim KS (2011) Kruppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer. J Biol Chem 286(27):23808–23816PubMedCentralPubMedCrossRef
20.
go back to reference Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, Della Donna L, Evers P et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci USA 108(38):16062–16067PubMedCentralPubMedCrossRef Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, Della Donna L, Evers P et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci USA 108(38):16062–16067PubMedCentralPubMedCrossRef
21.
go back to reference Warburg O (1924) On the metabolism of carcinoma cells. Biochem Z 152(309–344):309 Warburg O (1924) On the metabolism of carcinoma cells. Biochem Z 152(309–344):309
22.
go back to reference Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3):329–341PubMedCentralPubMedCrossRef Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3):329–341PubMedCentralPubMedCrossRef
23.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedCentralPubMedCrossRef Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedCentralPubMedCrossRef
24.
go back to reference Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272PubMedCrossRef Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272PubMedCrossRef
25.
go back to reference Morfouace M, Lalier L, Bahut M, Bonnamain V, Naveilhan P, Guette C, Oliver L, Gueguen N, Reynier P, Vallette FM (2012) Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications. J Biol Chem 287(40):33664–33674PubMedCentralPubMedCrossRef Morfouace M, Lalier L, Bahut M, Bonnamain V, Naveilhan P, Guette C, Oliver L, Gueguen N, Reynier P, Vallette FM (2012) Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications. J Biol Chem 287(40):33664–33674PubMedCentralPubMedCrossRef
26.
go back to reference Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, Martin-Castillo B, Lopez-Bonet E, Alarcon T, Vazquez-Martin A (2013) The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle 12(8):1166–1179PubMedCentralPubMedCrossRef Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, Martin-Castillo B, Lopez-Bonet E, Alarcon T, Vazquez-Martin A (2013) The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle 12(8):1166–1179PubMedCentralPubMedCrossRef
27.
go back to reference Feng W, Gentles A, Nair RV, Huang M, Lin Y, Lee CY, Cai S, Scheeren FA, Kuo AH, Diehn M (2014) Targeting unique metabolic properties of breast tumor initiating cells. Stem cells 32(7):1734–1745PubMedCrossRef Feng W, Gentles A, Nair RV, Huang M, Lin Y, Lee CY, Cai S, Scheeren FA, Kuo AH, Diehn M (2014) Targeting unique metabolic properties of breast tumor initiating cells. Stem cells 32(7):1734–1745PubMedCrossRef
Metadata
Title
Metabolic differences in breast cancer stem cells and differentiated progeny
Authors
Erina Vlashi
Chann Lagadec
Laurent Vergnes
Karen Reue
Patricia Frohnen
Mabel Chan
Yazeed Alhiyari
Milana Bochkur Dratver
Frank Pajonk
Publication date
01-08-2014
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2014
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-014-3051-2

Other articles of this Issue 3/2014

Breast Cancer Research and Treatment 3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine