Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2011

01-06-2011 | Brief Report

BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer

Authors: Michelle W. Wong, Cecilia Nordfors, David Mossman, Gordana Pecenpetelovska, Kelly A. Avery-Kiejda, Bente Talseth-Palmer, Nikola A. Bowden, Rodney J. Scott

Published in: Breast Cancer Research and Treatment | Issue 3/2011

Login to get access

Abstract

Mutations in the recognized breast cancer susceptibility genes BRCA1, BRCA2, TP53, ATM, and CHEK2 account for approximately 20% of hereditary breast cancer. This raises the possibility that mutations in other biologically relevant genes may be involved in genetic predisposition to breast cancer. In this study, BRIP1, PALB2, and RAD51C were sequenced for mutations as a result of previously being associated with breast cancer risk due to their role in the double-strand break repair pathway and their close association with BRCA1 and BRCA2. Two truncating mutations in PALB2 (Q66X and W1038X), one of which is has not been reported before, were detected in an independent Australian cohort of 70 individuals with breast or ovarian cancer, and have strong family histories of breast or breast/ovarian cancer. In addition, six missense variants predicted to be causative were detected, one in BRIP1 and five in PALB2. No causative variants were identified in RAD51C. This study supports recent observations that although rare, PALB2 mutations are present in a small but substantial proportion of inherited breast cancer cases, and indicates that RAD51C at a population level does not account for a substantial number of familial breast cancer cases.
Literature
1.
go back to reference Lynch HT, Krush AJ (1971) Carcinoma of the breast and ovary in three families. Surg Gynecol Obstet 133(4):644–648PubMed Lynch HT, Krush AJ (1971) Carcinoma of the breast and ovary in three families. Surg Gynecol Obstet 133(4):644–648PubMed
2.
go back to reference Lynch HT, Krush AJ, Lemon HM, Kaplan AR, Condit PT, Bottomley RH (1972) Tumor variation in families with breast cancer. JAMA 222(13):1631–1635PubMedCrossRef Lynch HT, Krush AJ, Lemon HM, Kaplan AR, Condit PT, Bottomley RH (1972) Tumor variation in families with breast cancer. JAMA 222(13):1631–1635PubMedCrossRef
3.
go back to reference Lynch HT, Guirgis HA, Albert S, Brennan M, Lynch J, Kraft C et al (1974) Familial association of carcinoma of the breast and ovary. Surg Gynecol Obstet 138(5):717–724PubMed Lynch HT, Guirgis HA, Albert S, Brennan M, Lynch J, Kraft C et al (1974) Familial association of carcinoma of the breast and ovary. Surg Gynecol Obstet 138(5):717–724PubMed
5.
go back to reference National Breast and Ovarian Cancer Centre (2009) Breast cancer risk factors: a review of the evidence. National Breast and Ovarian Cancer Centre, Surry Hills, NSW National Breast and Ovarian Cancer Centre (2009) Breast cancer risk factors: a review of the evidence. National Breast and Ovarian Cancer Centre, Surry Hills, NSW
7.
go back to reference Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7(5):552–556PubMedCrossRef Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7(5):552–556PubMedCrossRef
8.
go back to reference Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40(1):17–22PubMedCrossRef Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40(1):17–22PubMedCrossRef
9.
go back to reference Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present and future. Annu Rev Genom Hum Genet 9:321–345CrossRef Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present and future. Annu Rev Genom Hum Genet 9:321–345CrossRef
10.
go back to reference Easton DF, Bishop DT, Ford D, Crockford GP, Consortium BCL (1993) Genetic linkage analysis in familial breast and ovarian cancer. Am J Hum Genet 52(4):678–701PubMed Easton DF, Bishop DT, Ford D, Crockford GP, Consortium BCL (1993) Genetic linkage analysis in familial breast and ovarian cancer. Am J Hum Genet 52(4):678–701PubMed
11.
go back to reference Couch FJ, DeShano ML, Blackwood MA, Calzone K, Stopfer J, Campeau L et al (1997) BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. NEJM 336(20):1409–1415PubMedCrossRef Couch FJ, DeShano ML, Blackwood MA, Calzone K, Stopfer J, Campeau L et al (1997) BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. NEJM 336(20):1409–1415PubMedCrossRef
12.
go back to reference Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689PubMedCrossRef Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689PubMedCrossRef
13.
go back to reference Peto J, Collins N, Barfoot R, Seal S, Warren W, Rahman N et al (1999) Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. JNCI 91(11):943–949PubMed Peto J, Collins N, Barfoot R, Seal S, Warren W, Rahman N et al (1999) Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. JNCI 91(11):943–949PubMed
14.
go back to reference Stoppa-Lyonnet D, Laurent-Puig P, Essioux L, Pages S, Ithier G, Ligot L, Institut Curie Breast Cancer Group et al (1997) BRCA1 sequence variations in 160 individuals referred to a breast/ovarian family cancer clinic. Am J Hum Genet 60(5):1021–1030PubMed Stoppa-Lyonnet D, Laurent-Puig P, Essioux L, Pages S, Ithier G, Ligot L, Institut Curie Breast Cancer Group et al (1997) BRCA1 sequence variations in 160 individuals referred to a breast/ovarian family cancer clinic. Am J Hum Genet 60(5):1021–1030PubMed
15.
go back to reference Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, Lázaro C et al (2009) Genome-wide linkage scan reveals three putative breast-cancer susceptibility loci. Am J Hum Genet 84(2):115–122PubMedCrossRef Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, Lázaro C et al (2009) Genome-wide linkage scan reveals three putative breast-cancer susceptibility loci. Am J Hum Genet 84(2):115–122PubMedCrossRef
16.
go back to reference Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M et al. (2010) Genome-wide assocation study identifies five new breast cancer susceptibility loci. Nat Genet. doi:10.1038/ng.586 Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M et al. (2010) Genome-wide assocation study identifies five new breast cancer susceptibility loci. Nat Genet. doi:10.​1038/​ng.​586
17.
go back to reference Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093PubMedCrossRef Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093PubMedCrossRef
18.
go back to reference Smith P, McGuffog L, Easton DF, Mann GJ, Pupo GM, Newman B et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45(7):646–655PubMedCrossRef Smith P, McGuffog L, Easton DF, Mann GJ, Pupo GM, Newman B et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45(7):646–655PubMedCrossRef
19.
go back to reference Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J et al (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci USA 105(11):4340–4345PubMedCrossRef Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J et al (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci USA 105(11):4340–4345PubMedCrossRef
20.
go back to reference Cox DG, Penney K, Guo Q, Hankinson SE, Hunter DJ (2007) TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses’ Health Study. BMC Cancer 7(175):175PubMedCrossRef Cox DG, Penney K, Guo Q, Hankinson SE, Hunter DJ (2007) TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses’ Health Study. BMC Cancer 7(175):175PubMedCrossRef
21.
go back to reference Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42(5):410–414PubMedCrossRef Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42(5):410–414PubMedCrossRef
22.
go back to reference Levy-Lahad E (2010) Fanconi anemia and breast cancer susceptibility meet again. Nat Genet 42(5):368–369PubMedCrossRef Levy-Lahad E (2010) Fanconi anemia and breast cancer susceptibility meet again. Nat Genet 42(5):368–369PubMedCrossRef
23.
go back to reference Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38(11):1239–1241PubMedCrossRef Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38(11):1239–1241PubMedCrossRef
24.
go back to reference Zhang F, Fan Q, Ren K, Auerbach AD, Andreassen PR (2010) FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses. Chromosoma 119(6):637–649PubMedCrossRef Zhang F, Fan Q, Ren K, Auerbach AD, Andreassen PR (2010) FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses. Chromosoma 119(6):637–649PubMedCrossRef
25.
go back to reference Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N et al (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22(6):719–729PubMedCrossRef Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N et al (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22(6):719–729PubMedCrossRef
26.
go back to reference Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167PubMedCrossRef Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167PubMedCrossRef
27.
go back to reference Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q et al (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39(2):159–161PubMedCrossRef Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q et al (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39(2):159–161PubMedCrossRef
28.
go back to reference Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P et al (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37(9):931–933PubMedCrossRef Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P et al (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37(9):931–933PubMedCrossRef
29.
go back to reference Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V et al (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42(5):406–409PubMedCrossRef Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V et al (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42(5):406–409PubMedCrossRef
30.
go back to reference Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S et al (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105(1):149–160PubMedCrossRef Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S et al (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105(1):149–160PubMedCrossRef
31.
go back to reference Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302(5645):639–642PubMedCrossRef Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302(5645):639–642PubMedCrossRef
32.
go back to reference Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S et al (2004) The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA 101(8):2357–2362PubMedCrossRef Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S et al (2004) The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA 101(8):2357–2362PubMedCrossRef
33.
go back to reference Sy SM, Huen MS, Chen J (2009) PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA 106(17):7155–7160PubMedCrossRef Sy SM, Huen MS, Chen J (2009) PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA 106(17):7155–7160PubMedCrossRef
34.
go back to reference Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R et al (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39(2):162–164PubMedCrossRef Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R et al (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39(2):162–164PubMedCrossRef
35.
go back to reference Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J et al (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88(2):265–275PubMedCrossRef Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J et al (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88(2):265–275PubMedCrossRef
36.
go back to reference Venkitaraman AR (2009) Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol 4:461–487PubMedCrossRef Venkitaraman AR (2009) Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol 4:461–487PubMedCrossRef
37.
go back to reference Ripperger T, Gadzicki D, Meindl A, Schlegelberger B (2009) Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet 17(6):722–731PubMedCrossRef Ripperger T, Gadzicki D, Meindl A, Schlegelberger B (2009) Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet 17(6):722–731PubMedCrossRef
38.
go back to reference Tischkowitz M, Xia B, Sabbaghian N, Reis-Filho JS, Hamel N, Li G et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. PNAS 104(16):6788–6793PubMedCrossRef Tischkowitz M, Xia B, Sabbaghian N, Reis-Filho JS, Hamel N, Li G et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. PNAS 104(16):6788–6793PubMedCrossRef
39.
go back to reference Rutter JL, Smith AM, Dávila MR, Sigurdson AJ, Ruthann MG, Pineda MA et al (2003) Mutational analysis of the BRCA1-interacting genes ZNF350/ZBRK1 and BRIP/BACH1 among BRCA1 and BRCA2-negative probands from breast-ovarian cancer families and among early-onset breast cancer cases and reference individuals. Hum Mutat 22(2):121–128PubMedCrossRef Rutter JL, Smith AM, Dávila MR, Sigurdson AJ, Ruthann MG, Pineda MA et al (2003) Mutational analysis of the BRCA1-interacting genes ZNF350/ZBRK1 and BRIP/BACH1 among BRCA1 and BRCA2-negative probands from breast-ovarian cancer families and among early-onset breast cancer cases and reference individuals. Hum Mutat 22(2):121–128PubMedCrossRef
40.
go back to reference Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081PubMedCrossRef Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081PubMedCrossRef
41.
go back to reference Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814PubMedCrossRef Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814PubMedCrossRef
42.
go back to reference Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358PubMed Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358PubMed
43.
go back to reference Da Silva L, Lakhani SR (2010) Pathology of hereditary breast cancer. Mod Pathol 23(Suppl 2):S46–S51PubMedCrossRef Da Silva L, Lakhani SR (2010) Pathology of hereditary breast cancer. Mod Pathol 23(Suppl 2):S46–S51PubMedCrossRef
44.
go back to reference Palacios J, Honrado E, Osorio A, Cazorla A, Sarrio D, Barroso A et al (2003) Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9(10 Pt 1):3606–3614PubMed Palacios J, Honrado E, Osorio A, Cazorla A, Sarrio D, Barroso A et al (2003) Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9(10 Pt 1):3606–3614PubMed
45.
go back to reference Tischkowitz M, Xia B (2010) PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res 70(19):7353–7359PubMedCrossRef Tischkowitz M, Xia B (2010) PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res 70(19):7353–7359PubMedCrossRef
46.
go back to reference Foulkes WD, Ghadirian P, Akbari MR, Hamel N, Giroux S, Sabbaghian N et al (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French–Canadian women. Breast Cancer Res 9(6):83CrossRef Foulkes WD, Ghadirian P, Akbari MR, Hamel N, Giroux S, Sabbaghian N et al (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French–Canadian women. Breast Cancer Res 9(6):83CrossRef
47.
go back to reference Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH (2009) Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep 10(9):990–996PubMedCrossRef Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH (2009) Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep 10(9):990–996PubMedCrossRef
48.
go back to reference Zhang F, Fan Q, Ren K, Andreassen PR (2009) PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7(7):1110–1118PubMedCrossRef Zhang F, Fan Q, Ren K, Andreassen PR (2009) PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7(7):1110–1118PubMedCrossRef
49.
go back to reference Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B et al (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19(6):524–529PubMedCrossRef Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B et al (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19(6):524–529PubMedCrossRef
50.
go back to reference Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, Stasiak AZ et al (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17(10):1247–1254PubMedCrossRef Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, Stasiak AZ et al (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17(10):1247–1254PubMedCrossRef
51.
go back to reference Thompson D, Easton DF (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94(18):1358–1365PubMed Thompson D, Easton DF (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94(18):1358–1365PubMed
52.
go back to reference The Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. JNCI 91(15):1310–1316 The Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. JNCI 91(15):1310–1316
Metadata
Title
BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer
Authors
Michelle W. Wong
Cecilia Nordfors
David Mossman
Gordana Pecenpetelovska
Kelly A. Avery-Kiejda
Bente Talseth-Palmer
Nikola A. Bowden
Rodney J. Scott
Publication date
01-06-2011
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2011
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-011-1443-0

Other articles of this Issue 3/2011

Breast Cancer Research and Treatment 3/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine