Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2011

01-06-2011 | Preclinical study

Estrogen receptor beta decreases survival of p53-defective cancer cells after DNA damage by impairing G2/M checkpoint signaling

Authors: Christoforos G. Thomas, Anders Strom, Karolina Lindberg, Jan-Ake Gustafsson

Published in: Breast Cancer Research and Treatment | Issue 2/2011

Login to get access

Abstract

Estrogen receptor beta (ERβ) inhibits proliferation in different cellular systems by regulating components of the cell cycle machinery. Eukaryotic cells respond to DNA damage by arresting in G1, S, or G2 phases of the cell cycle to initiate DNA repair. Most tumor cells due to disruptions in the p53-dependent G1 pathway are dependent on S-phase and G2/M checkpoints to maintain genomic integrity in response to DNA damage. We report that induction of ERβ expression causes abrogation of the S-phase, and the Chk1/Cdc25C-mediated G2/M checkpoints after cisplatin and doxorubicin exposure in p53-defective breast cancer cells but not in p53 wild-type mammary cells. This impairment of DNA damage response that involves BRCA1 downregulation and caspase-2 activation results in mitotic catastrophe and decreased cancer cell survival. These results indicate that in cancers where p53 is defective, assessment of the presence of ERβ may be of predictive value for the successful response to chemotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634PubMedCrossRef Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634PubMedCrossRef
2.
3.
go back to reference Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311PubMed Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311PubMed
5.
go back to reference Dixon H, Norbury CJ (2002) Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function. Cell Cycle 1:362–368PubMedCrossRef Dixon H, Norbury CJ (2002) Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function. Cell Cycle 1:362–368PubMedCrossRef
6.
go back to reference Scully R, Chen J, Plug A et al (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275PubMedCrossRef Scully R, Chen J, Plug A et al (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275PubMedCrossRef
7.
go back to reference Yamane K, Schupp JE, Kinsella TJ (2007) BRCA1 activates a G2-M cell cycle checkpoint following 6-thioguanine-induced DNA mismatch damage. Cancer Res 67:6286–6292PubMedCrossRef Yamane K, Schupp JE, Kinsella TJ (2007) BRCA1 activates a G2-M cell cycle checkpoint following 6-thioguanine-induced DNA mismatch damage. Cancer Res 67:6286–6292PubMedCrossRef
8.
go back to reference Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518PubMedCrossRef Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518PubMedCrossRef
9.
go back to reference Xu X, Weaver Z, Linke SP et al (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395PubMedCrossRef Xu X, Weaver Z, Linke SP et al (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395PubMedCrossRef
10.
go back to reference Shen SX, Weaver Z, Xu X et al (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17:3115–3124PubMedCrossRef Shen SX, Weaver Z, Xu X et al (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17:3115–3124PubMedCrossRef
11.
go back to reference Tassone P, Di Martino MT, Ventura M et al (2009) Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther 8:648–653PubMed Tassone P, Di Martino MT, Ventura M et al (2009) Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther 8:648–653PubMed
12.
go back to reference Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96:1659–1668PubMedCrossRef Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96:1659–1668PubMedCrossRef
13.
go back to reference Powell SN, Kachnic LA (2008) Therapeutic exploitation of tumor cell defects in homologous recombination. Anticancer Agents Med Chem 8:448–460PubMed Powell SN, Kachnic LA (2008) Therapeutic exploitation of tumor cell defects in homologous recombination. Anticancer Agents Med Chem 8:448–460PubMed
14.
go back to reference Wu K, Jiang SW, Couch FJ (2003) p53 mediates repression of the BRCA2 promoter and down-regulation of BRCA2 mRNA and protein levels in response to DNA damage. J Biol Chem 278:15652–15660PubMedCrossRef Wu K, Jiang SW, Couch FJ (2003) p53 mediates repression of the BRCA2 promoter and down-regulation of BRCA2 mRNA and protein levels in response to DNA damage. J Biol Chem 278:15652–15660PubMedCrossRef
15.
go back to reference Arizti P, Fang L, Park I et al (2000) Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol 20:7450–7459PubMedCrossRef Arizti P, Fang L, Park I et al (2000) Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol 20:7450–7459PubMedCrossRef
16.
go back to reference Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93:5925–5930PubMedCrossRef Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93:5925–5930PubMedCrossRef
17.
go back to reference Gustafsson JA (1999) Estrogen receptor beta—a new dimension in estrogen mechanism of action. J Endocrinol 163:379–383PubMedCrossRef Gustafsson JA (1999) Estrogen receptor beta—a new dimension in estrogen mechanism of action. J Endocrinol 163:379–383PubMedCrossRef
18.
go back to reference Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F (2001) ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142:4120–4130PubMedCrossRef Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F (2001) ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142:4120–4130PubMedCrossRef
19.
go back to reference Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA (2004) Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A 101:1566–1571PubMedCrossRef Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA (2004) Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A 101:1566–1571PubMedCrossRef
20.
go back to reference Hartman J, Lindberg K, Morani A, Inzunza J, Strom A, Gustafsson JA (2006) Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res 66:11207–11213PubMedCrossRef Hartman J, Lindberg K, Morani A, Inzunza J, Strom A, Gustafsson JA (2006) Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res 66:11207–11213PubMedCrossRef
21.
go back to reference Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC (2004) Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res 64:423–428PubMedCrossRef Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC (2004) Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res 64:423–428PubMedCrossRef
22.
go back to reference Jin W, Chen Y, Di GH et al (2008) Estrogen receptor (ER) beta or p53 attenuates ERalpha-mediated transcriptional activation on the BRCA2 promoter. J Biol Chem 283:29671–29680PubMedCrossRef Jin W, Chen Y, Di GH et al (2008) Estrogen receptor (ER) beta or p53 attenuates ERalpha-mediated transcriptional activation on the BRCA2 promoter. J Biol Chem 283:29671–29680PubMedCrossRef
23.
go back to reference Kravchenko JE, Ilyinskaya GV, Komarov PG et al (2008) Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci U S A 105:6302–6307PubMedCrossRef Kravchenko JE, Ilyinskaya GV, Komarov PG et al (2008) Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci U S A 105:6302–6307PubMedCrossRef
24.
go back to reference Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429PubMedCrossRef Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429PubMedCrossRef
25.
go back to reference Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837PubMedCrossRef Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837PubMedCrossRef
26.
go back to reference Castedo M, Perfettini JL, Roumier T et al (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23:4353–4361PubMedCrossRef Castedo M, Perfettini JL, Roumier T et al (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23:4353–4361PubMedCrossRef
27.
go back to reference Zhivotovsky B, Orrenius S (2005) Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331:859–867PubMedCrossRef Zhivotovsky B, Orrenius S (2005) Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331:859–867PubMedCrossRef
28.
go back to reference Sidi S, Sanda T, Kennedy RD et al (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133:864–877PubMedCrossRef Sidi S, Sanda T, Kennedy RD et al (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133:864–877PubMedCrossRef
29.
go back to reference Menendez D, Inga A, Resnick MA (2010) Estrogen receptor acting in cis enhances WT and mutant p53 transactivation at canonical and noncanonical p53 target sequences. Proc Natl Acad Sci U S A 107:1500–1505PubMedCrossRef Menendez D, Inga A, Resnick MA (2010) Estrogen receptor acting in cis enhances WT and mutant p53 transactivation at canonical and noncanonical p53 target sequences. Proc Natl Acad Sci U S A 107:1500–1505PubMedCrossRef
30.
go back to reference Bolderson E, Richard DJ, Zhou BB, Khanna KK (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15:6314–6320PubMedCrossRef Bolderson E, Richard DJ, Zhou BB, Khanna KK (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15:6314–6320PubMedCrossRef
31.
go back to reference Dunphy WG, Kumagai A (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell 67:189–196PubMedCrossRef Dunphy WG, Kumagai A (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell 67:189–196PubMedCrossRef
32.
go back to reference Pines J, Hunter T (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115:1–17PubMedCrossRef Pines J, Hunter T (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115:1–17PubMedCrossRef
33.
go back to reference Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505PubMedCrossRef Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505PubMedCrossRef
34.
go back to reference Kumagai A, Dunphy WG (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380PubMedCrossRef Kumagai A, Dunphy WG (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380PubMedCrossRef
35.
go back to reference Sauve K, Lepage J, Sanchez M, Heveker N, Tremblay A (2009) Positive feedback activation of estrogen receptors by the CXCL12-CXCR4 pathway. Cancer Res 69:5793–5800PubMedCrossRef Sauve K, Lepage J, Sanchez M, Heveker N, Tremblay A (2009) Positive feedback activation of estrogen receptors by the CXCL12-CXCR4 pathway. Cancer Res 69:5793–5800PubMedCrossRef
36.
go back to reference Tordai A, Wang J, Andre F et al (2008) Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 10:R37PubMedCrossRef Tordai A, Wang J, Andre F et al (2008) Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 10:R37PubMedCrossRef
37.
go back to reference Duong V, Boulle N, Daujat S et al (2007) Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67:5513–5521PubMedCrossRef Duong V, Boulle N, Daujat S et al (2007) Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67:5513–5521PubMedCrossRef
38.
go back to reference Menendez D, Inga A, Snipe J, Krysiak O, Schonfelder G, Resnick MA (2007) A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1. Mol Cell Biol 27:2590–2600PubMedCrossRef Menendez D, Inga A, Snipe J, Krysiak O, Schonfelder G, Resnick MA (2007) A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1. Mol Cell Biol 27:2590–2600PubMedCrossRef
39.
go back to reference Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189PubMedCrossRef Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189PubMedCrossRef
Metadata
Title
Estrogen receptor beta decreases survival of p53-defective cancer cells after DNA damage by impairing G2/M checkpoint signaling
Authors
Christoforos G. Thomas
Anders Strom
Karolina Lindberg
Jan-Ake Gustafsson
Publication date
01-06-2011
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2011
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-010-1011-z

Other articles of this Issue 2/2011

Breast Cancer Research and Treatment 2/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine