Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2010

01-08-2010 | Preclinical study

GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells

Authors: Johanna K. Morales, Maciej Kmieciak, Keith L. Knutson, Harry D. Bear, Masoud H. Manjili

Published in: Breast Cancer Research and Treatment | Issue 1/2010

Login to get access

Abstract

Recent reports have shown the involvement of tumor burden as well as GM-CSF in supporting myeloid-derived suppressor cells (MDSC). However, it is not known what progenitor cells may differentiate into MDSC in the presence of GM-CSF, and whether FVBN202 transgenic mouse model of spontaneous breast carcinoma may exhibit distinct subset distribution of CD11b+Gr1+ cells. In addition, it is not known why CD11b+Gr1+ cells derived from tumor-free and tumor-bearing animals exhibit different functions. In this study, we determined that GM-CSF was one of the tumor-derived soluble factors that induced differentiation of CD11b-Gr1- progenitor cells from within monocytic/granulocytic bone marrow cells into CD11b+Gr1+ cells. We also showed that CD11b+Gr1+ cells in FVBN202 mice consisted of CD11b+Ly6G-Ly6C+ suppressive and CD11b+Ly6G+Ly6C+ non-suppressive subsets. Previously reported variations between tumor-free and tumor-bearing animals in the function of their CD11b+Gr1+ cells were found to be due to the variations in the proportion of these two subsets. Therefore, increasing ratios of CD11b+Gr1+ cells derived from tumor-free animals revealed their suppressive activity on T cells, in vitro. Importantly, GM-CSF supported the generation of CD11b+Ly6G-Ly6C+ suppressor subsets that inhibited proliferation as well as anti-tumor function of neu-specific T cells. These findings suggest revisiting the use of GM-CSF for the expansion of dendritic cells, ex vivo, for cell-based immunotherapy or as an adjuvant for vaccines for patients with cancer in whom MDSC play a major role in the suppression of anti-tumor immune responses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gallina G, Dolcetti L, Serafini P et al (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777–2790CrossRefPubMed Gallina G, Dolcetti L, Serafini P et al (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777–2790CrossRefPubMed
2.
go back to reference Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802PubMed Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802PubMed
3.
go back to reference Habibi M, Kmieciak M, Graham L, Morales JK, Bear HD, Manjili MH (2009) Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat 114:423–431CrossRefPubMed Habibi M, Kmieciak M, Graham L, Morales JK, Bear HD, Manjili MH (2009) Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Res Treat 114:423–431CrossRefPubMed
4.
go back to reference Rodriguez PC, Hernandez CP, Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939CrossRefPubMed Rodriguez PC, Hernandez CP, Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939CrossRefPubMed
5.
go back to reference Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13:721s–726sCrossRefPubMed Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13:721s–726sCrossRefPubMed
6.
go back to reference Zea AH, Rodriguez PC, Atkins MB et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048PubMed Zea AH, Rodriguez PC, Atkins MB et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048PubMed
7.
go back to reference Valenti R, Huber V, Filipazzi P et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298CrossRefPubMed Valenti R, Huber V, Filipazzi P et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298CrossRefPubMed
8.
go back to reference Young MR, Lathers DM (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol 21:241–252CrossRefPubMed Young MR, Lathers DM (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol 21:241–252CrossRefPubMed
9.
go back to reference Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59CrossRefPubMed Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59CrossRefPubMed
10.
go back to reference Ezernitchi AV, Vaknin I, Cohen-Daniel L et al (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177:4763–4772PubMed Ezernitchi AV, Vaknin I, Cohen-Daniel L et al (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177:4763–4772PubMed
11.
go back to reference Gruber IV, El Yousfi S, Durr-Storzer S, Wallwiener D, Solomayer EF, Fehm T (2008) Down-regulation of CD28, TCR-zeta (zeta) and up-regulation of FAS in peripheral cytotoxic T-cells of primary breast cancer patients. Anticancer Res 28:779–784PubMed Gruber IV, El Yousfi S, Durr-Storzer S, Wallwiener D, Solomayer EF, Fehm T (2008) Down-regulation of CD28, TCR-zeta (zeta) and up-regulation of FAS in peripheral cytotoxic T-cells of primary breast cancer patients. Anticancer Res 28:779–784PubMed
12.
go back to reference Dworacki G, Meidenbauer N, Kuss I, Hoffmann TK, Gooding W, Lotze M, Whiteside TL (2001) Decreased zeta chain expression and apoptosis in CD3+ peripheral blood T lymphocytes of patients with melanoma. Clin Cancer Res 7:947s–957sPubMed Dworacki G, Meidenbauer N, Kuss I, Hoffmann TK, Gooding W, Lotze M, Whiteside TL (2001) Decreased zeta chain expression and apoptosis in CD3+ peripheral blood T lymphocytes of patients with melanoma. Clin Cancer Res 7:947s–957sPubMed
13.
go back to reference Takahashi A, Kono K, Amemiya H, Iizuka H, Fujii H, Matsumoto Y (2001) Elevated caspase-3 activity in peripheral blood T cells coexists with increased degree of T-cell apoptosis and down-regulation of TCR zeta molecules in patients with gastric cancer. Clin Cancer Res 7:74–80PubMed Takahashi A, Kono K, Amemiya H, Iizuka H, Fujii H, Matsumoto Y (2001) Elevated caspase-3 activity in peripheral blood T cells coexists with increased degree of T-cell apoptosis and down-regulation of TCR zeta molecules in patients with gastric cancer. Clin Cancer Res 7:74–80PubMed
14.
go back to reference Pan PY, Wang GX, Yin B et al (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228CrossRefPubMed Pan PY, Wang GX, Yin B et al (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228CrossRefPubMed
15.
go back to reference Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145CrossRefPubMed Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145CrossRefPubMed
16.
go back to reference Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR (1997) Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 73:663–669CrossRefPubMed Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR (1997) Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 73:663–669CrossRefPubMed
17.
go back to reference Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L (2007) Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18:226–232CrossRefPubMed Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L (2007) Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18:226–232CrossRefPubMed
18.
go back to reference Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1999) Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 163:1690–1695PubMed Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1999) Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 163:1690–1695PubMed
19.
go back to reference Filipazzi P, Valenti R, Huber V et al (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553CrossRefPubMed Filipazzi P, Valenti R, Huber V et al (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553CrossRefPubMed
20.
go back to reference Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64:6337–6343CrossRefPubMed Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64:6337–6343CrossRefPubMed
21.
go back to reference Rössner S, Voigtländer C, Wiethe C, Hänig J, Seifarth C, Lutz MB (2005) Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35(12):3533–3544CrossRefPubMed Rössner S, Voigtländer C, Wiethe C, Hänig J, Seifarth C, Lutz MB (2005) Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35(12):3533–3544CrossRefPubMed
22.
go back to reference Movahedi K, Guilliams M, Van den Bossche J et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244CrossRefPubMed Movahedi K, Guilliams M, Van den Bossche J et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244CrossRefPubMed
23.
go back to reference Sawanobori Y, Ueha S, Kurachi M et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466CrossRefPubMed Sawanobori Y, Ueha S, Kurachi M et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466CrossRefPubMed
24.
go back to reference Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89:10578–10582CrossRefPubMed Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89:10578–10582CrossRefPubMed
25.
go back to reference Kmieciak M, Morales JK, Morales J, Bolesta E, Grimes M, Manjili MH (2008) Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design. Cancer Immunol Immunother 57:1391–1398CrossRefPubMed Kmieciak M, Morales JK, Morales J, Bolesta E, Grimes M, Manjili MH (2008) Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design. Cancer Immunol Immunother 57:1391–1398CrossRefPubMed
26.
go back to reference Kmieciak M, Knutson KL, Dumur CI, Manjili MH (2007) HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur J Immunol 37:675–685CrossRefPubMed Kmieciak M, Knutson KL, Dumur CI, Manjili MH (2007) HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur J Immunol 37:675–685CrossRefPubMed
27.
go back to reference Morales JK, Kmieciak M, Graham L, Feldmesser M, Bear HD, Manjili MH (2009) Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunol Immunother 58(6):941–953CrossRefPubMed Morales JK, Kmieciak M, Graham L, Feldmesser M, Bear HD, Manjili MH (2009) Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunol Immunother 58(6):941–953CrossRefPubMed
28.
go back to reference Dugast AS, Haudebourg T, Coulon F et al (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180(12):7898–7906PubMed Dugast AS, Haudebourg T, Coulon F et al (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180(12):7898–7906PubMed
29.
go back to reference Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179CrossRefPubMed Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179CrossRefPubMed
30.
go back to reference Bronte V, Chappell DB, Apolloni E et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162:5728–5737PubMed Bronte V, Chappell DB, Apolloni E et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162:5728–5737PubMed
31.
go back to reference Daud AI, Mirza N, Lenox B et al (2008) Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J Clin Oncol 26:3235–3241CrossRefPubMed Daud AI, Mirza N, Lenox B et al (2008) Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J Clin Oncol 26:3235–3241CrossRefPubMed
32.
go back to reference Nefedova Y, Huang M, Kusmartsev S et al (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474PubMed Nefedova Y, Huang M, Kusmartsev S et al (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474PubMed
33.
go back to reference Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267:271–285CrossRefPubMed Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267:271–285CrossRefPubMed
34.
go back to reference Yamashiro S, Takeya M, Nishi T et al (1994) Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am J Pathol 145:856–867PubMed Yamashiro S, Takeya M, Nishi T et al (1994) Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am J Pathol 145:856–867PubMed
35.
go back to reference Rössner S, Voigtländer C, Wiethe C, Hänig J, Seifarth C, Lutz MB (2005) Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35:3533–3544CrossRefPubMed Rössner S, Voigtländer C, Wiethe C, Hänig J, Seifarth C, Lutz MB (2005) Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35:3533–3544CrossRefPubMed
Metadata
Title
GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells
Authors
Johanna K. Morales
Maciej Kmieciak
Keith L. Knutson
Harry D. Bear
Masoud H. Manjili
Publication date
01-08-2010
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2010
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-009-0622-8

Other articles of this Issue 1/2010

Breast Cancer Research and Treatment 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine