Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2010

01-04-2010 | Preclinical study

Prolactin and estradiol utilize distinct mechanisms to increase serine-118 phosphorylation and decrease levels of estrogen receptor α in T47D breast cancer cells

Authors: YenHao Chen, KuangTzu Huang, KuanHui E. Chen, Ameae M. Walker

Published in: Breast Cancer Research and Treatment | Issue 2/2010

Login to get access

Abstract

Potential interactions between prolactin (PRL) and estradiol (E2) in breast cancer cells were explored by examining the effect of PRL on estrogen receptor (ER) serine-118 phosphorylation, ER down-regulation, and E2-stimulated cell proliferation. Both E2 and PRL resulted in prolonged ERα serine-118 phosphorylation, but used different signaling pathways to achieve this end. Both hormones also decreased the amount of ERα, but the mechanisms were different: for E2, the decrease was rapid and resulted from proteasomic degradation, whereas for PRL the decrease was slow and resulted from an effect on levels of ERα mRNA. PRL alone had no effect on cell number, but enhanced the increase in number in response to E2. These results are the first to demonstrate similar effects of PRL and E2 on parameters considered key to E2’s effects. This suggests heretofore unrecognized and potentially important interactions between these two hormones in the natural history of breast cancer.
Literature
1.
go back to reference Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29:217–233CrossRefPubMed Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29:217–233CrossRefPubMed
2.
go back to reference Blank EW, Wong PY, Lakshmanaswarmy R, Guzman R, Nandi S (2008) Both ovarian hormones estrogen and progesterone are necessary for hormonal mammary carcinogenesis in ovariectomized ACI rats. Proc Natl Acad Sci USA 105:3527–3532CrossRefPubMed Blank EW, Wong PY, Lakshmanaswarmy R, Guzman R, Nandi S (2008) Both ovarian hormones estrogen and progesterone are necessary for hormonal mammary carcinogenesis in ovariectomized ACI rats. Proc Natl Acad Sci USA 105:3527–3532CrossRefPubMed
3.
4.
go back to reference Clevenger CV, Furth PA, Hankinson SE, Schuler LA (2003) The role of prolactin in mammary carcinoma. Endocr Rev 24:1–27CrossRefPubMed Clevenger CV, Furth PA, Hankinson SE, Schuler LA (2003) The role of prolactin in mammary carcinoma. Endocr Rev 24:1–27CrossRefPubMed
5.
go back to reference Lakshmanaswamy R, Guzman RC, Nandi S (2008) Hormonal prevention of breast cancer: significance of promotional environment. Adv Exp Med Biol 617:469–475CrossRefPubMed Lakshmanaswamy R, Guzman RC, Nandi S (2008) Hormonal prevention of breast cancer: significance of promotional environment. Adv Exp Med Biol 617:469–475CrossRefPubMed
6.
go back to reference Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839CrossRefPubMed Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839CrossRefPubMed
7.
go back to reference Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486CrossRefPubMed Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486CrossRefPubMed
8.
go back to reference Jensen EV (1991) Overview of the nuclear receptor family. In: Parker M (ed) Nuclear hormone receptors. Academic Press, London, pp 1–13 Jensen EV (1991) Overview of the nuclear receptor family. In: Parker M (ed) Nuclear hormone receptors. Academic Press, London, pp 1–13
9.
go back to reference Shiau AK, Barstad D, Loria PM, Cheng L, Kishner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937CrossRefPubMed Shiau AK, Barstad D, Loria PM, Cheng L, Kishner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937CrossRefPubMed
10.
go back to reference Castoria G, Migliaccio A, Bilancio A, Di Domenico M, deFalco A, Lombardi M, Fiorentino R, Varrichio L, Barone MV, Aurichio F (2001) PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 20:6050–6059CrossRefPubMed Castoria G, Migliaccio A, Bilancio A, Di Domenico M, deFalco A, Lombardi M, Fiorentino R, Varrichio L, Barone MV, Aurichio F (2001) PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 20:6050–6059CrossRefPubMed
11.
go back to reference Kelly MJ, Levin ER (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 12:152–156CrossRefPubMed Kelly MJ, Levin ER (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 12:152–156CrossRefPubMed
12.
go back to reference Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, Santen RJ (2002) Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and Shc pathway activation. Mol Endocrinol 16:116–127CrossRefPubMed Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, Santen RJ (2002) Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and Shc pathway activation. Mol Endocrinol 16:116–127CrossRefPubMed
13.
go back to reference Castano E, Chen CW, Vorojeikina DP, Notides AC (1998) The role of phosphorylation in human estrogen receptor function. J Steroid Biochem Mol Biol 65:101–110CrossRefPubMed Castano E, Chen CW, Vorojeikina DP, Notides AC (1998) The role of phosphorylation in human estrogen receptor function. J Steroid Biochem Mol Biol 65:101–110CrossRefPubMed
14.
go back to reference Endoh H, Maruyama K, Masuhiro Y, Koayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363–5372PubMed Endoh H, Maruyama K, Masuhiro Y, Koayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363–5372PubMed
15.
go back to reference Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494CrossRefPubMed Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494CrossRefPubMed
16.
go back to reference Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95:2920–2925CrossRefPubMed Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95:2920–2925CrossRefPubMed
17.
go back to reference Mendez P, Garcia-Segura LM (2006) Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells. Endocrinology 147:3027–3039CrossRefPubMed Mendez P, Garcia-Segura LM (2006) Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells. Endocrinology 147:3027–3039CrossRefPubMed
18.
go back to reference Migliaccio A, DiDomenico M, Castoria G, deFalco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300PubMed Migliaccio A, DiDomenico M, Castoria G, deFalco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300PubMed
19.
go back to reference Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, Gong W, Beato M, Auricchio F (1998) Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17:2008–2018CrossRefPubMed Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, Gong W, Beato M, Auricchio F (1998) Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17:2008–2018CrossRefPubMed
20.
go back to reference Migliaccio A, Castoria G, DiDomenico M, deFalco A, Bilancio A, Lombardi M, Barone MV, Ametrano D, Zannini MS, Abbondanza C, Auricchio F (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19:5406–5417CrossRefPubMed Migliaccio A, Castoria G, DiDomenico M, deFalco A, Bilancio A, Lombardi M, Barone MV, Ametrano D, Zannini MS, Abbondanza C, Auricchio F (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19:5406–5417CrossRefPubMed
21.
go back to reference Valley CC, Solodin NM, Powers GL, Ellison SJ, Alarid ET (2008) Temporal variation in estrogen receptor-alpha protein turnover in the presence of estrogen. J Mol Endocrinol 40:23–34CrossRefPubMed Valley CC, Solodin NM, Powers GL, Ellison SJ, Alarid ET (2008) Temporal variation in estrogen receptor-alpha protein turnover in the presence of estrogen. J Mol Endocrinol 40:23–34CrossRefPubMed
22.
go back to reference Medunjanin S, Hermani A, De Servi B, Grisouard J, Rinke G, Mayer D (2005) Glycogen synthase kinase 3 interacts with and phosphorylates estrogen receptor α and is involved in the regulation of receptor activity. J Biol Chem 280:33006–33014CrossRefPubMed Medunjanin S, Hermani A, De Servi B, Grisouard J, Rinke G, Mayer D (2005) Glycogen synthase kinase 3 interacts with and phosphorylates estrogen receptor α and is involved in the regulation of receptor activity. J Biol Chem 280:33006–33014CrossRefPubMed
23.
go back to reference Nirmala PB, Thampan RV (1995) Ubiquitination of the rat uterine estrogen receptor: dependence on estradiol. Biochem Biophys Res Commun 213:24–31CrossRefPubMed Nirmala PB, Thampan RV (1995) Ubiquitination of the rat uterine estrogen receptor: dependence on estradiol. Biochem Biophys Res Commun 213:24–31CrossRefPubMed
24.
go back to reference Pakdel F, LeGoff P, Katzenellenbogen BS (1993) An assessment of the role of domain F and PEST sequences in estrogen receptor half-life and bioactivity. J Steroid Biochem Mol Biol 46:663–672CrossRefPubMed Pakdel F, LeGoff P, Katzenellenbogen BS (1993) An assessment of the role of domain F and PEST sequences in estrogen receptor half-life and bioactivity. J Steroid Biochem Mol Biol 46:663–672CrossRefPubMed
25.
go back to reference Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862CrossRefPubMed Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862CrossRefPubMed
26.
go back to reference Campbell GS, Argetsinger LS, Ihle JN, Kelly PA, Rillema JA, Carter-Su C (1994) Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci USA 91:5232–5236CrossRefPubMed Campbell GS, Argetsinger LS, Ihle JN, Kelly PA, Rillema JA, Carter-Su C (1994) Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci USA 91:5232–5236CrossRefPubMed
27.
go back to reference Rui H, Kirken RA, Farrar WL (1994) Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 269:5364–5368PubMed Rui H, Kirken RA, Farrar WL (1994) Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 269:5364–5368PubMed
28.
go back to reference Tan D, Johnson DA, Wu W, Zeng L, Chen YH, Chen WY, Vonderhaar BK, Walker AM (2005) Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo- and hetero-pairs of long and short human PRL receptors in living human cells. Mol Endocrinol 19:1291–1303CrossRefPubMed Tan D, Johnson DA, Wu W, Zeng L, Chen YH, Chen WY, Vonderhaar BK, Walker AM (2005) Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo- and hetero-pairs of long and short human PRL receptors in living human cells. Mol Endocrinol 19:1291–1303CrossRefPubMed
29.
go back to reference Zheng J, Koblinski JE, Dutson LV, Feeney YB, Clevenger CV (2008) Prolyl isomerase cyclophilin A regulation of janus-activated kinase 2 and the progression of human breast cancer. Cancer Res 68:7769–7778CrossRefPubMed Zheng J, Koblinski JE, Dutson LV, Feeney YB, Clevenger CV (2008) Prolyl isomerase cyclophilin A regulation of janus-activated kinase 2 and the progression of human breast cancer. Cancer Res 68:7769–7778CrossRefPubMed
30.
go back to reference Goupille O, Barnier JV, Guibert B, Paly J, Djiane J (2000) Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 159:133–146CrossRefPubMed Goupille O, Barnier JV, Guibert B, Paly J, Djiane J (2000) Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 159:133–146CrossRefPubMed
31.
go back to reference Pezet A, Ferrag F, Kelly PA, Edery M (1997) Tyrosine docking sites of the rat prolactin receptor required for association and activation of Stat5. J Biol Chem 272:25043–25050CrossRefPubMed Pezet A, Ferrag F, Kelly PA, Edery M (1997) Tyrosine docking sites of the rat prolactin receptor required for association and activation of Stat5. J Biol Chem 272:25043–25050CrossRefPubMed
32.
go back to reference Ali S, Ali S (1998) Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J Biol Chem 273:7709–7716CrossRefPubMed Ali S, Ali S (1998) Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J Biol Chem 273:7709–7716CrossRefPubMed
33.
go back to reference Clevenger CV, Ngo W, Sokol DL, Luger SM, Gewirtz AM (1995) Vav is necessary for prolactin-stimulated proliferation and is translocated into the nucleus of a T-cell line. J Biol Chem 270:13246–13253CrossRefPubMed Clevenger CV, Ngo W, Sokol DL, Luger SM, Gewirtz AM (1995) Vav is necessary for prolactin-stimulated proliferation and is translocated into the nucleus of a T-cell line. J Biol Chem 270:13246–13253CrossRefPubMed
34.
go back to reference Gouilleux F, Wakao H, Mundt M, Groner B (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 13:4361–4369PubMed Gouilleux F, Wakao H, Mundt M, Groner B (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 13:4361–4369PubMed
35.
go back to reference Clevenger CV, Torigoe T, Reed JC (1994) Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J Biol Chem 269:5559–5565PubMed Clevenger CV, Torigoe T, Reed JC (1994) Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J Biol Chem 269:5559–5565PubMed
36.
go back to reference Das R, Vonderhaar BK (1996) Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene 13:1139–1145PubMed Das R, Vonderhaar BK (1996) Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene 13:1139–1145PubMed
37.
go back to reference Erwin RA, Kirken RA, Malabarba MG, Farrar WL, Rui H (1995) Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology 136:3512–3518CrossRefPubMed Erwin RA, Kirken RA, Malabarba MG, Farrar WL, Rui H (1995) Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology 136:3512–3518CrossRefPubMed
38.
go back to reference Peters CA, Maizels ET, Robertson MC, Shiu RP, Soloff MS, Hunzicker-Dunn M (2000) Induction of relaxin messenger RNA expression in response to prolactin receptor activation requires protein kinase C delta signaling. Mol Endocrinol 14:576–590CrossRefPubMed Peters CA, Maizels ET, Robertson MC, Shiu RP, Soloff MS, Hunzicker-Dunn M (2000) Induction of relaxin messenger RNA expression in response to prolactin receptor activation requires protein kinase C delta signaling. Mol Endocrinol 14:576–590CrossRefPubMed
39.
go back to reference Acosta JJ, Munoz RM, Gonzalez L, Subtil-Rodriguez A, Dominguez-Caceres MA, Garcia-Martinez JM, Calcabrini A, Lazaro-Trueba I, Martin-Perez J (2003) Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways. Mol Endocrinol 17:2268–2282CrossRefPubMed Acosta JJ, Munoz RM, Gonzalez L, Subtil-Rodriguez A, Dominguez-Caceres MA, Garcia-Martinez JM, Calcabrini A, Lazaro-Trueba I, Martin-Perez J (2003) Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways. Mol Endocrinol 17:2268–2282CrossRefPubMed
40.
go back to reference Berlanga JJ, Fresno Vara JA, Martin-Perez J, Garcia-Ruiz JP (1995) Prolactin receptor is associated with c-src kinase in rat liver. Mol Endocrinol 9:1461–1467CrossRefPubMed Berlanga JJ, Fresno Vara JA, Martin-Perez J, Garcia-Ruiz JP (1995) Prolactin receptor is associated with c-src kinase in rat liver. Mol Endocrinol 9:1461–1467CrossRefPubMed
41.
go back to reference Clevenger CV, Medaglia MV (1994) The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol 8:674–681CrossRefPubMed Clevenger CV, Medaglia MV (1994) The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol 8:674–681CrossRefPubMed
42.
go back to reference Fresno Vara JA, Caceres MA, Silva A, Martin-Perez J (2001) Src family kinases are required for prolactin induction of cell proliferation. Mol Biol Cell 12:2171–2183PubMed Fresno Vara JA, Caceres MA, Silva A, Martin-Perez J (2001) Src family kinases are required for prolactin induction of cell proliferation. Mol Biol Cell 12:2171–2183PubMed
43.
go back to reference Mangoura D, Pelletiere C, Leung S, Sakellaridis N, Wang DX (2000) Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 18:693–704CrossRefPubMed Mangoura D, Pelletiere C, Leung S, Sakellaridis N, Wang DX (2000) Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 18:693–704CrossRefPubMed
44.
go back to reference al-Sakkaf KA, Dobson PR, Brown BL (1997) Prolactin induced tyrosine phosphorylation of p59fyn may mediate phosphatidylinositol 3-kinase activation in Nb2 cells. J Mol Endocrinol 19:347–350CrossRefPubMed al-Sakkaf KA, Dobson PR, Brown BL (1997) Prolactin induced tyrosine phosphorylation of p59fyn may mediate phosphatidylinositol 3-kinase activation in Nb2 cells. J Mol Endocrinol 19:347–350CrossRefPubMed
45.
go back to reference Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I, Tobe K, Yazaki Y, Kadowaki T (1998) Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. J Biol Chem 273:15719–15726CrossRefPubMed Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I, Tobe K, Yazaki Y, Kadowaki T (1998) Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. J Biol Chem 273:15719–15726CrossRefPubMed
46.
go back to reference Wang Y-F, Jia H, Walker AM, Cukierman S (1992) K-current mediation of prolactin-induced proliferation of malignant (Nb2) lymphocytes. J Cell Physiol 152:185–189CrossRefPubMed Wang Y-F, Jia H, Walker AM, Cukierman S (1992) K-current mediation of prolactin-induced proliferation of malignant (Nb2) lymphocytes. J Cell Physiol 152:185–189CrossRefPubMed
47.
go back to reference Chen TJ, Kuo C-YB, Tsai KF, Liu J-W, Chen D-Y, Walker AM (1998) Development of recombinant human prolactin receptor antagonists by molecular mimicry of the phosphorylated hormone. Endocrinology 139:609–616CrossRefPubMed Chen TJ, Kuo C-YB, Tsai KF, Liu J-W, Chen D-Y, Walker AM (1998) Development of recombinant human prolactin receptor antagonists by molecular mimicry of the phosphorylated hormone. Endocrinology 139:609–616CrossRefPubMed
48.
go back to reference Huang KT, Chen YH, Walker AM (2004) Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 37:406–412PubMed Huang KT, Chen YH, Walker AM (2004) Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 37:406–412PubMed
49.
go back to reference Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J Mol Med 76:469–479CrossRefPubMed Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J Mol Med 76:469–479CrossRefPubMed
50.
go back to reference Philips N, McFadden K (2004) Inhibition of transforming growth factor-beta and matrix metalloproteinases by estrogen and prolactin in breast cancer cells. Cancer Lett 206:63–68CrossRefPubMed Philips N, McFadden K (2004) Inhibition of transforming growth factor-beta and matrix metalloproteinases by estrogen and prolactin in breast cancer cells. Cancer Lett 206:63–68CrossRefPubMed
51.
go back to reference Pasapera Limon AM, Herrera-Munoz J, Gutierrez-Sagal R, Ulloa-Aguirre A (2003) The phosphatidylinositol 3-kinase inhibitor LY294002 binds the estrogen receptor and inhibits 17β-estradiol-induced transcriptional activity of an estrogen sensitive reporter gene. Mol Cell Endocrinol 200:199–202CrossRefPubMed Pasapera Limon AM, Herrera-Munoz J, Gutierrez-Sagal R, Ulloa-Aguirre A (2003) The phosphatidylinositol 3-kinase inhibitor LY294002 binds the estrogen receptor and inhibits 17β-estradiol-induced transcriptional activity of an estrogen sensitive reporter gene. Mol Cell Endocrinol 200:199–202CrossRefPubMed
52.
go back to reference Murphy LC, Weitsman GE, Skliris GP, The EM, Li L, Peng B, Davie JR, Ung K, Niu Y-L, Troup S, Tomes L, Watson PH (2006) Potential role of estrogen receptor α (ERα) phosphorylated at serine 118 in human breast cancer in vivo. J Steroid Biochem Mol Biol 102:139–146CrossRefPubMed Murphy LC, Weitsman GE, Skliris GP, The EM, Li L, Peng B, Davie JR, Ung K, Niu Y-L, Troup S, Tomes L, Watson PH (2006) Potential role of estrogen receptor α (ERα) phosphorylated at serine 118 in human breast cancer in vivo. J Steroid Biochem Mol Biol 102:139–146CrossRefPubMed
53.
go back to reference Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S (2002) Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21:4921–4931CrossRefPubMed Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S (2002) Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21:4921–4931CrossRefPubMed
54.
go back to reference Park K, Krishnan V, O’Malley B, Yamamoto Y, Gaynor R (2205) Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18:71–82CrossRef Park K, Krishnan V, O’Malley B, Yamamoto Y, Gaynor R (2205) Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18:71–82CrossRef
Metadata
Title
Prolactin and estradiol utilize distinct mechanisms to increase serine-118 phosphorylation and decrease levels of estrogen receptor α in T47D breast cancer cells
Authors
YenHao Chen
KuangTzu Huang
KuanHui E. Chen
Ameae M. Walker
Publication date
01-04-2010
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2010
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-009-0400-7

Other articles of this Issue 2/2010

Breast Cancer Research and Treatment 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine