Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2008

01-11-2008 | Preclinical Study

Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers

Authors: Logan C. Walker, Nic Waddell, Anette Ten Haaf, Sean Grimmond, Amanda B. Spurdle, kConFab Investigators

Published in: Breast Cancer Research and Treatment | Issue 2/2008

Login to get access

Abstract

Germline mutations in BRCA1 or BRCA2 confer an increased lifetime risk of developing breast or ovarian cancer, but variable penetrance suggests that cancer susceptibility is influenced in part by modifier genes. Microarray expression profiling was conducted for 69 irradiated lymphoblastoid cell lines derived from healthy controls, or from cancer-affected women with a strong family history of breast and ovarian cancer carrying pathogenic mutations in BRCA1 or BRCA2, or with no BRCA1/2 mutations (BRCAX). Genes discriminating between BRCA1, BRCA2 or BRCAX and controls were stratified based on irradiation response and/or cell cycle involvement. Gene lists were aligned against genes tagged with single nucleotide polymorphisms (SNPs) determined by the Cancer Genetic Markers of Susceptibility (CGEMS) Breast Cancer Whole Genome Association Scan to be nominally associated with breast cancer risk. Irradiation responsive genes whose expression correlated with BRCA1 and/or BRCA2 mutation status were more likely to be tagged by risk-associated SNPs in the CGEMS dataset (BRCA1, P = 0.0005; BRCA2, P = 0.01). In contrast, irradiation responsive genes correlating with BRCAX status were not enriched in the CGEMS dataset. Classification of expression data by involvement in cell cycle processes did not enrich for genes tagged by risk-associated SNPs, for BRCA1, BRCA2 or BRCAX groups. Using a novel combinatorial approach, we have identified a subset of irradiation responsive genes as high priority candidate BRCA1/2 modifier genes. Similar approaches may be used to identify genes and underlying genetic risk factors that interact with exogenous stimulants to cause or modify any disease, without a priori knowledge of the pathways involved.
Appendix
Available only for authorised users
Literature
1.
go back to reference Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ et al (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63(2):125–149PubMedCrossRef Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ et al (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63(2):125–149PubMedCrossRef
2.
go back to reference Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130PubMedCrossRef Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130PubMedCrossRef
3.
go back to reference Simchoni S, Friedman E, Kaufman B et al (2006) Familial clustering of site-specific cancer risks associated with BRCA1 and BRCA2 mutations in the Ashkenazi Jewish population. Proc Natl Acad Sci USA 103(10):3770–3774PubMedCrossRef Simchoni S, Friedman E, Kaufman B et al (2006) Familial clustering of site-specific cancer risks associated with BRCA1 and BRCA2 mutations in the Ashkenazi Jewish population. Proc Natl Acad Sci USA 103(10):3770–3774PubMedCrossRef
4.
go back to reference Smith A, Moran A, Boyd MC et al (2007) Phenocopies in BRCA1 and BRCA2 families: evidence for modifier genes and implications for screening. J Med Genet 44(1):10–15PubMedCrossRef Smith A, Moran A, Boyd MC et al (2007) Phenocopies in BRCA1 and BRCA2 families: evidence for modifier genes and implications for screening. J Med Genet 44(1):10–15PubMedCrossRef
5.
go back to reference Antoniou AC, Sinilnikova OM, Simard J et al (2007) RAD51 135G>C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81(6):1186–1200PubMedCrossRef Antoniou AC, Sinilnikova OM, Simard J et al (2007) RAD51 135G>C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81(6):1186–1200PubMedCrossRef
6.
go back to reference Osorio A, Martinez-Delgado B, Pollan M et al (2006) A haplotype containing the p53 polymorphisms Ins16bp and Arg72Pro modifies cancer risk in BRCA2 mutation carriers. Hum Mutat 27(3):242–248PubMedCrossRef Osorio A, Martinez-Delgado B, Pollan M et al (2006) A haplotype containing the p53 polymorphisms Ins16bp and Arg72Pro modifies cancer risk in BRCA2 mutation carriers. Hum Mutat 27(3):242–248PubMedCrossRef
7.
go back to reference Rebbeck TR, Kantoff PW, Krithivas K et al (1999) Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am J Hum Genet 64(5):1371–1377PubMedCrossRef Rebbeck TR, Kantoff PW, Krithivas K et al (1999) Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am J Hum Genet 64(5):1371–1377PubMedCrossRef
8.
go back to reference Rebbeck TR, Wang Y, Kantoff PW et al (2001) Modification of BRCA1- and BRCA2-associated breast cancer risk by AIB1 genotype and reproductive history. Cancer Res 61(14):5420–5424PubMed Rebbeck TR, Wang Y, Kantoff PW et al (2001) Modification of BRCA1- and BRCA2-associated breast cancer risk by AIB1 genotype and reproductive history. Cancer Res 61(14):5420–5424PubMed
9.
go back to reference Spurdle AB, Antoniou AC, Duffy DL et al (2005) The androgen receptor CAG repeat polymorphism and modification of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res 7(2):R176–R183PubMedCrossRef Spurdle AB, Antoniou AC, Duffy DL et al (2005) The androgen receptor CAG repeat polymorphism and modification of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res 7(2):R176–R183PubMedCrossRef
10.
go back to reference Spurdle AB, Antoniou AC, Kelemen L et al (2006) The AIB1 polyglutamine repeat does not modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 15(1):76–79PubMedCrossRef Spurdle AB, Antoniou AC, Kelemen L et al (2006) The AIB1 polyglutamine repeat does not modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 15(1):76–79PubMedCrossRef
11.
go back to reference Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10(2):144–150PubMedCrossRef Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10(2):144–150PubMedCrossRef
12.
go back to reference Shivji MK, Davies OR, Savill JM et al (2006) A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange. Nucleic Acids Res 34(14):4000–4011PubMedCrossRef Shivji MK, Davies OR, Savill JM et al (2006) A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange. Nucleic Acids Res 34(14):4000–4011PubMedCrossRef
13.
go back to reference Broeks A, Braaf LM, Huseinovic A et al (2007) Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study. Breast Cancer Res 9(2):R26PubMedCrossRef Broeks A, Braaf LM, Huseinovic A et al (2007) Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study. Breast Cancer Res 9(2):R26PubMedCrossRef
14.
go back to reference Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25(43):5854–5863PubMedCrossRef Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25(43):5854–5863PubMedCrossRef
15.
go back to reference Marmorstein LY, Kinev AV, Chan GK et al (2001) A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104(2):247–257PubMedCrossRef Marmorstein LY, Kinev AV, Chan GK et al (2001) A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104(2):247–257PubMedCrossRef
16.
go back to reference Mann GJ, Thorne H, Balleine RL et al (2006) Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res 8(1):R12PubMedCrossRef Mann GJ, Thorne H, Balleine RL et al (2006) Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res 8(1):R12PubMedCrossRef
17.
go back to reference Marsh A, Healey S, Lewis A et al (2007) Mutation analysis of five candidate genes in familial breast cancer. Breast Cancer Res Treat 105(3):377–389PubMedCrossRef Marsh A, Healey S, Lewis A et al (2007) Mutation analysis of five candidate genes in familial breast cancer. Breast Cancer Res Treat 105(3):377–389PubMedCrossRef
18.
go back to reference Chenevix-Trench G, Healey S, Lakhani S et al (2006) Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res 66(4):2019–2027PubMedCrossRef Chenevix-Trench G, Healey S, Lakhani S et al (2006) Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res 66(4):2019–2027PubMedCrossRef
19.
go back to reference Jen KY, Cheung VG (2003) Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 13(9):2092–2100PubMedCrossRef Jen KY, Cheung VG (2003) Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 13(9):2092–2100PubMedCrossRef
20.
go back to reference Eberle MA, Ng PC, Kuhn K et al (2007) Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet 3(10):1827–1837PubMedCrossRef Eberle MA, Ng PC, Kuhn K et al (2007) Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet 3(10):1827–1837PubMedCrossRef
21.
go back to reference Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093PubMedCrossRef Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093PubMedCrossRef
22.
go back to reference Bussey KJ, Kane D, Sunshine M et al (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biol 4(4):R27PubMedCrossRef Bussey KJ, Kane D, Sunshine M et al (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biol 4(4):R27PubMedCrossRef
23.
go back to reference Smith P, McGuffog L, Easton DF et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45(7):646–655PubMedCrossRef Smith P, McGuffog L, Easton DF et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45(7):646–655PubMedCrossRef
24.
go back to reference Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39(3):352–358PubMedCrossRef Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39(3):352–358PubMedCrossRef
25.
go back to reference Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167PubMedCrossRef Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167PubMedCrossRef
26.
go back to reference Renwick A, Thompson D, Seal S et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875PubMedCrossRef Renwick A, Thompson D, Seal S et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875PubMedCrossRef
27.
go back to reference Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38(11):1239–1241PubMedCrossRef Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38(11):1239–1241PubMedCrossRef
28.
go back to reference Steffen J, Nowakowska D, Niwinska A et al (2006) Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer 119(2):472–475PubMedCrossRef Steffen J, Nowakowska D, Niwinska A et al (2006) Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer 119(2):472–475PubMedCrossRef
29.
go back to reference Dubrovska A, Kanamoto T, Lomnytska M et al (2005) TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage. Oncogene 24(14):2289–2297PubMedCrossRef Dubrovska A, Kanamoto T, Lomnytska M et al (2005) TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage. Oncogene 24(14):2289–2297PubMedCrossRef
30.
go back to reference Hu YF, Li R (2002) JunB potentiates function of BRCA1 activation domain 1 (AD1) through a coiled-coil-mediated interaction. Genes Dev 16(12):1509–1517PubMedCrossRef Hu YF, Li R (2002) JunB potentiates function of BRCA1 activation domain 1 (AD1) through a coiled-coil-mediated interaction. Genes Dev 16(12):1509–1517PubMedCrossRef
31.
go back to reference Preobrazhenska O, Yakymovych M, Kanamoto T et al (2002) BRCA2 and Smad3 synergize in regulation of gene transcription. Oncogene 21(36):5660–5664PubMedCrossRef Preobrazhenska O, Yakymovych M, Kanamoto T et al (2002) BRCA2 and Smad3 synergize in regulation of gene transcription. Oncogene 21(36):5660–5664PubMedCrossRef
32.
go back to reference Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4(4):294–301PubMedCrossRef Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4(4):294–301PubMedCrossRef
33.
go back to reference Wozniak MA, Desai R, Solski PA et al (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3):583–595PubMedCrossRef Wozniak MA, Desai R, Solski PA et al (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3):583–595PubMedCrossRef
34.
go back to reference Gooch JL, Lee AV, Yee D (1998) Interleukin 4 inhibits growth and induces apoptosis in human breast cancer cells. Cancer Res 58(18):4199–4205PubMed Gooch JL, Lee AV, Yee D (1998) Interleukin 4 inhibits growth and induces apoptosis in human breast cancer cells. Cancer Res 58(18):4199–4205PubMed
35.
go back to reference Balasubramanian SP, Azmy IA, Higham SE et al (2006) Interleukin gene polymorphisms and breast cancer: a case control study and systematic literature review. BMC Cancer 6:188PubMedCrossRef Balasubramanian SP, Azmy IA, Higham SE et al (2006) Interleukin gene polymorphisms and breast cancer: a case control study and systematic literature review. BMC Cancer 6:188PubMedCrossRef
36.
go back to reference Consortium TIH (2003) The international HapMap project. Nature 426(6968):789–796CrossRef Consortium TIH (2003) The international HapMap project. Nature 426(6968):789–796CrossRef
37.
go back to reference Papageorgio C, Brachmann R, Zeng J et al (2007) MAGED2: a novel p53-dissociator. Int J Oncol 31(5):1205–1211PubMed Papageorgio C, Brachmann R, Zeng J et al (2007) MAGED2: a novel p53-dissociator. Int J Oncol 31(5):1205–1211PubMed
38.
go back to reference Schuyer M, Berns EM (1999) Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol 155(1–2):143–152PubMedCrossRef Schuyer M, Berns EM (1999) Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol 155(1–2):143–152PubMedCrossRef
39.
go back to reference Welch PJ, Wang JY (1993) A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75(4):779–790PubMedCrossRef Welch PJ, Wang JY (1993) A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75(4):779–790PubMedCrossRef
40.
go back to reference Gery S, Komatsu N, Baldjyan L et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382PubMedCrossRef Gery S, Komatsu N, Baldjyan L et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382PubMedCrossRef
41.
go back to reference Winter SL, Bosnoyan-Collins L, Pinnaduwage D et al (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9(10):797–800PubMedCrossRef Winter SL, Bosnoyan-Collins L, Pinnaduwage D et al (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9(10):797–800PubMedCrossRef
Metadata
Title
Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers
Authors
Logan C. Walker
Nic Waddell
Anette Ten Haaf
Sean Grimmond
Amanda B. Spurdle
kConFab Investigators
Publication date
01-11-2008
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2008
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9848-5

Other articles of this Issue 2/2008

Breast Cancer Research and Treatment 2/2008 Go to the issue

Erratum

Editorial

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine