Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2008

01-11-2008 | Epidemiology

TGFβ1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFβ1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy

Authors: Thangarajan Rajkumar, Mani Samson, Ranganathan Rama, Veluswami Sridevi, Urmila Mahji, Rajaraman Swaminathan, Nirmala K. Nancy

Published in: Breast Cancer Research and Treatment | Issue 1/2008

Login to get access

Abstract

The breast cancer incidence has been increasing in the south Indian women. A case (n = 250)–control (n = 500) study was undertaken to investigate the role of Single Nucleotide Polymorphisms (SNP’s) in GSTM1 (Present/Null); GSTP1 (Ile105Val), p53 (Arg72Pro), TGFβ1 (Leu10Pro), c-erbB2 (Ile655Val), and GSTT1 (Null/Present) in breast cancer. In addition, the value of the SNP’s in predicting primary tumor’s pathologic response following neo-adjuvant chemo-radiotherapy was assessed. Genotyping was done using PCR (GSTM1, GSTT1), Taqman Allelic discrimination assay (GSTP1, c-erbB2) and PCR-CTPP (p53 and TGFβ1). None of the gene SNP’s studied were associated with a statistically significant increased risk for the breast cancer. However, combined analysis of the SNP’s showed that p53 (Arg/Arg and Arg/Pro) with TGFβ1 (Pro/Pro and Leu/Pro) were associated with greater than 2 fold increased risk for breast cancer in Univariate (P = 0.01) and Multivariate (P = 0.003) analysis. There was no statistically significant association for the GST family members with the breast cancer risk. TGFβ1 (Pro/Pro) allele was found to predict complete pathologic response in the primary tumour following neo-adjuvant chemo-radiotherapy (OR = 6.53 and 10.53 in Univariate and Multivariate analysis respectively) (P = 0.004) and was independent of stage. This study suggests that SNP’s can help predict breast cancer risk in south Indian women and that TGFβ1 (Pro/Pro) allele is associated with a better pCR in the primary tumour.
Literature
1.
go back to reference Shanta V, Swaminathan R, Kavitha M (2005) Cancer incidence and mortality in Chennai, India, Year 2002. Madras Metropolitan Tumor Registry, National Cancer Registry Program, Cancer Institute (WIA), Chennai Shanta V, Swaminathan R, Kavitha M (2005) Cancer incidence and mortality in Chennai, India, Year 2002. Madras Metropolitan Tumor Registry, National Cancer Registry Program, Cancer Institute (WIA), Chennai
2.
go back to reference Samson M, Swaminathan R, Rama R, Sridevi V, Nancy KN, Rajkumar T (2007) Role of GSTM1 (Null/Present), GSTP1 (Ile105Val) and P53 (Arg72Pro) Genetic polymorphisms and the risk of breast cancer - A case control study from south India. Asian Pac J Cancer Prev 8:253–257PubMed Samson M, Swaminathan R, Rama R, Sridevi V, Nancy KN, Rajkumar T (2007) Role of GSTM1 (Null/Present), GSTP1 (Ile105Val) and P53 (Arg72Pro) Genetic polymorphisms and the risk of breast cancer - A case control study from south India. Asian Pac J Cancer Prev 8:253–257PubMed
3.
go back to reference Wagner TM, Moslinger RA, Muhr D, Langbauer G, Hirtenlehner K et al (1998) BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics. Int J Cancer 77:354–360PubMedCrossRef Wagner TM, Moslinger RA, Muhr D, Langbauer G, Hirtenlehner K et al (1998) BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics. Int J Cancer 77:354–360PubMedCrossRef
4.
go back to reference Couch FJ, Wang XY, Wu GJ, Qian J, Jenkins RB, James CD (1999) Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59:1408–1411PubMed Couch FJ, Wang XY, Wu GJ, Qian J, Jenkins RB, James CD (1999) Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59:1408–1411PubMed
5.
go back to reference Dunning AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF (1999) A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8:843–854PubMed Dunning AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF (1999) A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8:843–854PubMed
6.
go back to reference Wang H, Zeng ZC, Bui TA, DiBiase SJ, Qin W, Xia F, Powell SN, Iliakis G et al (2001) Non-homologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA21. Cancer Res 61:270–277PubMed Wang H, Zeng ZC, Bui TA, DiBiase SJ, Qin W, Xia F, Powell SN, Iliakis G et al (2001) Non-homologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA21. Cancer Res 61:270–277PubMed
7.
go back to reference Ameyaw MM, Tayeb M, Thornton N, Folayan G, Tariq M, Mobarek A et al (2002) Ethnic variation in the HER-2 codon 655 genetic polymorphism previously associated with breast cancer. J Hum Genet 47:172–175PubMedCrossRef Ameyaw MM, Tayeb M, Thornton N, Folayan G, Tariq M, Mobarek A et al (2002) Ethnic variation in the HER-2 codon 655 genetic polymorphism previously associated with breast cancer. J Hum Genet 47:172–175PubMedCrossRef
8.
go back to reference Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS et al (2003) A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63(10):2610–2615PubMed Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS et al (2003) A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63(10):2610–2615PubMed
9.
go back to reference Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1094PubMedCrossRef Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1094PubMedCrossRef
10.
go back to reference Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874PubMedCrossRef Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874PubMedCrossRef
11.
go back to reference Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3(3):e42PubMedCrossRef Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3(3):e42PubMedCrossRef
12.
go back to reference Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A et al (2005) Genetic polymorphisms of TGFβ11 & TNF-β and breast cancer risk. Breast Cancer Res Treat 90:149–155PubMedCrossRef Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A et al (2005) Genetic polymorphisms of TGFβ11 & TNF-β and breast cancer risk. Breast Cancer Res Treat 90:149–155PubMedCrossRef
13.
go back to reference Krajinovic M, Labuda D, Richer C, Karimi S, Sinnett D (1999) A susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 93:1496–1501PubMed Krajinovic M, Labuda D, Richer C, Karimi S, Sinnett D (1999) A susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 93:1496–1501PubMed
14.
go back to reference Beslow NE, Day NE (1980) Statistical methods in cancer research. Vol I. The analysis of cases-control studies. IARC Scientific Publications No 32, IARC, Lyon Beslow NE, Day NE (1980) Statistical methods in cancer research. Vol I. The analysis of cases-control studies. IARC Scientific Publications No 32, IARC, Lyon
15.
go back to reference Kaplan EL, Meier P (1958) Non parametric estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRef Kaplan EL, Meier P (1958) Non parametric estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRef
16.
go back to reference Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39(5):688CrossRef Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39(5):688CrossRef
17.
go back to reference Xie D, Shu XO, Deng Z, Wen WQ, Creek KE, Dai Q et al (2000) Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst 92:412–417PubMedCrossRef Xie D, Shu XO, Deng Z, Wen WQ, Creek KE, Dai Q et al (2000) Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst 92:412–417PubMedCrossRef
18.
go back to reference Pinto D, Vasconcelos A, Costa S, Pereira D, Rodrigues H et al (2004) HER2 polymorphism and breast cancer risk in Portugal. Eur J Cancer Prev 13:177–181PubMedCrossRef Pinto D, Vasconcelos A, Costa S, Pereira D, Rodrigues H et al (2004) HER2 polymorphism and breast cancer risk in Portugal. Eur J Cancer Prev 13:177–181PubMedCrossRef
19.
go back to reference Tommasi S, Fedele V, Lacalamita R, Bruno M, Schittulli F, Ginzinger D et al (2007) 655Val and 1170Pro ERBB2 SNPs in familial breast cancer risk and BRCA1 alterations. Cell Oncol 29:241–248PubMed Tommasi S, Fedele V, Lacalamita R, Bruno M, Schittulli F, Ginzinger D et al (2007) 655Val and 1170Pro ERBB2 SNPs in familial breast cancer risk and BRCA1 alterations. Cell Oncol 29:241–248PubMed
20.
go back to reference Benusiglio PR, Lesueur F, Luccarini C, Conroy DM, Shah M et al (2005) Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study. Breast Cancer Res 7:204–209CrossRef Benusiglio PR, Lesueur F, Luccarini C, Conroy DM, Shah M et al (2005) Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study. Breast Cancer Res 7:204–209CrossRef
21.
go back to reference Han W, Kang D, Lee JE, Park IA, Choi JY, Lee KM et al (2005) A haplotype analysis of HER-2 gene polymorphisms: association with breast cancer risk, HER-2 protein expression in the tumor, and disease recurrence in Korea. Clin Cancer Res 11:4775–4778PubMedCrossRef Han W, Kang D, Lee JE, Park IA, Choi JY, Lee KM et al (2005) A haplotype analysis of HER-2 gene polymorphisms: association with breast cancer risk, HER-2 protein expression in the tumor, and disease recurrence in Korea. Clin Cancer Res 11:4775–4778PubMedCrossRef
22.
go back to reference Nelson SE, Gould MN, Hampton JM, Trentham-Dietz A (2005) A case-control study of the HER2 Ile655Val polymorphism in relation to risk of invasive breast cancer. Breast Cancer Res 7:357–364CrossRef Nelson SE, Gould MN, Hampton JM, Trentham-Dietz A (2005) A case-control study of the HER2 Ile655Val polymorphism in relation to risk of invasive breast cancer. Breast Cancer Res 7:357–364CrossRef
23.
go back to reference Cox DG, Hankinson SE, Hunter DJ (2005) The erbB2/HER2/neu receptor polymorphism Ile655Val and breast cancer risk. Pharmacogenet Genomics 15:447–450PubMedCrossRef Cox DG, Hankinson SE, Hunter DJ (2005) The erbB2/HER2/neu receptor polymorphism Ile655Val and breast cancer risk. Pharmacogenet Genomics 15:447–450PubMedCrossRef
24.
go back to reference Vogl FD, Taioli E, Maugard C, Zheng W, Pinto LF et al (2004) Glutathione S-transferases M1, T1, and P1 and breast cancer: a pooled analysis. Cancer Epidemiol Biomarkers Prev 9:1473–1479 Vogl FD, Taioli E, Maugard C, Zheng W, Pinto LF et al (2004) Glutathione S-transferases M1, T1, and P1 and breast cancer: a pooled analysis. Cancer Epidemiol Biomarkers Prev 9:1473–1479
25.
go back to reference Edvardsen H, Kristensen VN, Grenaker Alnaes GI, Bøhn M, Erikstein B et al (2007) Germline glutathione S-transferase variants in breast cancer: relation to diagnosis and cutaneous long-term adverse effects after two fractionation patterns of radiotherapy. Int J Radiat Oncol Biol Phys 67:163–171 Edvardsen H, Kristensen VN, Grenaker Alnaes GI, Bøhn M, Erikstein B et al (2007) Germline glutathione S-transferase variants in breast cancer: relation to diagnosis and cutaneous long-term adverse effects after two fractionation patterns of radiotherapy. Int J Radiat Oncol Biol Phys 67:163–171
26.
go back to reference Park SK, Yim DS, Yoon KS, Choi IM, Choi JY, Yoo KY et al (2004) Combined effect of GSTM1, GSTT1, and COMT genotypes in individual breast cancer risk. Breast Cancer Res Treat 88:55–62PubMedCrossRef Park SK, Yim DS, Yoon KS, Choi IM, Choi JY, Yoo KY et al (2004) Combined effect of GSTM1, GSTT1, and COMT genotypes in individual breast cancer risk. Breast Cancer Res Treat 88:55–62PubMedCrossRef
27.
go back to reference Steck SE, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB et al (2007) Interactions among GSTM1, GSTT1 and GSTP1 polymorphisms, cruciferous vegetable intake and breast cancer risk. Carcinogenesis 128:1954–1959CrossRef Steck SE, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB et al (2007) Interactions among GSTM1, GSTT1 and GSTP1 polymorphisms, cruciferous vegetable intake and breast cancer risk. Carcinogenesis 128:1954–1959CrossRef
28.
go back to reference Spurdle AB, Chang JH, Byrnes GB, Chen X, Dite GS et al (2007) A systematic approach to analyzing gene-gene interactions: polymorphisms at the microsomal epoxide hydrolase EPHX and glutathione S-transferase GSTM1, GSTT1, and GSTP1 loci and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16:769–774PubMedCrossRef Spurdle AB, Chang JH, Byrnes GB, Chen X, Dite GS et al (2007) A systematic approach to analyzing gene-gene interactions: polymorphisms at the microsomal epoxide hydrolase EPHX and glutathione S-transferase GSTM1, GSTT1, and GSTP1 loci and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16:769–774PubMedCrossRef
29.
go back to reference Andreassen CN, Alsner J, Overgaard J, Herskind C, Haviland J et al (2005) TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother Oncol 75:18–21PubMedCrossRef Andreassen CN, Alsner J, Overgaard J, Herskind C, Haviland J et al (2005) TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother Oncol 75:18–21PubMedCrossRef
30.
go back to reference DeMichele A, Aplenc R, Botbyl J, Colligan T, Wray L et al (2005) Drug-metabolizing enzyme polymorphisms predict clinical outcome in a node-positive breast cancer cohort. J Clin Oncol 23:5552–5559PubMedCrossRef DeMichele A, Aplenc R, Botbyl J, Colligan T, Wray L et al (2005) Drug-metabolizing enzyme polymorphisms predict clinical outcome in a node-positive breast cancer cohort. J Clin Oncol 23:5552–5559PubMedCrossRef
31.
go back to reference Yang G, Shu XO, Ruan ZX, Cai QY, Jin F et al (2005) Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer 103:52–58PubMedCrossRef Yang G, Shu XO, Ruan ZX, Cai QY, Jin F et al (2005) Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer 103:52–58PubMedCrossRef
Metadata
Title
TGFβ1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFβ1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy
Authors
Thangarajan Rajkumar
Mani Samson
Ranganathan Rama
Veluswami Sridevi
Urmila Mahji
Rajaraman Swaminathan
Nirmala K. Nancy
Publication date
01-11-2008
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2008
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9821-3

Other articles of this Issue 1/2008

Breast Cancer Research and Treatment 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine