Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 1/2011

Open Access 01-02-2011 | Homocysteine and B-Vitamin Metabolism

Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects

Authors: Henk J. Blom, Yvo Smulders

Published in: Journal of Inherited Metabolic Disease | Issue 1/2011

Login to get access

Abstract

This overview addresses homocysteine and folate metabolism. Its functions and complexity are described, leading to explanations why disturbed homocysteine and folate metabolism is implicated in many different diseases, including congenital birth defects like congenital heart disease, cleft lip and palate, late pregnancy complications, different kinds of neurodegenerative and psychiatric diseases, osteoporosis and cancer. In addition, the inborn errors leading to hyperhomocysteinemia and homocystinuria are described. These extreme human hyperhomocysteinemia models provide knowledge about which part of the homocysteine and folate pathways are linked to which disease. For example, the very high risk for arterial and venous occlusive disease in patients with severe hyperhomocysteinemia irrespective of the location of the defect in remethylation or transsulphuration indicates that homocysteine itself or one of its “direct” derivatives is considered toxic for the cardiovascular system. Finally, common diseases associated with elevated homocysteine are discussed with the focus on cardiovascular disease and neural tube defects.
Literature
go back to reference Afman LA, Blom HJ, Drittij MJ, Brouns MR, van Straaten HW (2005) Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res Dev Brain Res 158:59–65CrossRefPubMed Afman LA, Blom HJ, Drittij MJ, Brouns MR, van Straaten HW (2005) Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res Dev Brain Res 158:59–65CrossRefPubMed
go back to reference Al-Gazali LI, Padmanabhan R, Melnyk S et al (2001) Abnormal folate metabolism and genetic polymorphism of the folate pathway in a child with Down syndrome and neural tube defect. Am J Med Genet 103:128–132CrossRefPubMed Al-Gazali LI, Padmanabhan R, Melnyk S et al (2001) Abnormal folate metabolism and genetic polymorphism of the folate pathway in a child with Down syndrome and neural tube defect. Am J Med Genet 103:128–132CrossRefPubMed
go back to reference Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220CrossRefPubMed Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220CrossRefPubMed
go back to reference Barber RC, Lammer EJ, Shaw GM, Greer KA, Finnell RH (1999) The role of folate transport and metabolism in neural tube defect risk. Mol Genet Metab 66:1–9CrossRefPubMed Barber RC, Lammer EJ, Shaw GM, Greer KA, Finnell RH (1999) The role of folate transport and metabolism in neural tube defect risk. Mol Genet Metab 66:1–9CrossRefPubMed
go back to reference Blom HJ (2009) Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol 85:295–302CrossRefPubMed Blom HJ (2009) Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol 85:295–302CrossRefPubMed
go back to reference Blom HJ, Shaw GM, den Heijer M, Finnell RH (2006) Neural tube defects and folate: case far from closed. Nat Rev Neurosci 7:724–731CrossRefPubMed Blom HJ, Shaw GM, den Heijer M, Finnell RH (2006) Neural tube defects and folate: case far from closed. Nat Rev Neurosci 7:724–731CrossRefPubMed
go back to reference Castro R, Rivera I, Ravasco P et al (2004) 5, 10-methylenetetrahydrofolate reductase (MTHFR) 677C–>T and 1298A–>C mutations are associated with DNA hypomethylation. J Med Genet 41:454–458CrossRefPubMed Castro R, Rivera I, Ravasco P et al (2004) 5, 10-methylenetetrahydrofolate reductase (MTHFR) 677C–>T and 1298A–>C mutations are associated with DNA hypomethylation. J Med Genet 41:454–458CrossRefPubMed
go back to reference Chandler CJ, Harrison DA, Buffington CA, Santiago NA, Halsted CH (1991) Functional specificity of jejunal brush-border pteroylpolyglutamate hydrolase in pig. Am J Physiol 260:G865–G872PubMed Chandler CJ, Harrison DA, Buffington CA, Santiago NA, Halsted CH (1991) Functional specificity of jejunal brush-border pteroylpolyglutamate hydrolase in pig. Am J Physiol 260:G865–G872PubMed
go back to reference Coelho CN, Klein NW (1990) Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology 42:437–451CrossRefPubMed Coelho CN, Klein NW (1990) Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology 42:437–451CrossRefPubMed
go back to reference Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835CrossRefPubMed Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835CrossRefPubMed
go back to reference Dean W, Lucifero D, Santos F (2005) DNA methylation in mammalian development and disease. Birth Defects Res C Embryo Today 75:98–111CrossRefPubMed Dean W, Lucifero D, Santos F (2005) DNA methylation in mammalian development and disease. Birth Defects Res C Embryo Today 75:98–111CrossRefPubMed
go back to reference Dunlevy LP, Burren KA, Mills K, Chitty LS, Copp AJ, Greene ND (2006) Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Res A Clin Mol Teratol 76:544–552CrossRefPubMed Dunlevy LP, Burren KA, Mills K, Chitty LS, Copp AJ, Greene ND (2006) Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Res A Clin Mol Teratol 76:544–552CrossRefPubMed
go back to reference Finkelstein JD (2007) Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 45:1694–1699CrossRefPubMed Finkelstein JD (2007) Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 45:1694–1699CrossRefPubMed
go back to reference Friso S, Choi SW, Girelli D et al (2002) A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99:5606–5611CrossRefPubMed Friso S, Choi SW, Girelli D et al (2002) A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99:5606–5611CrossRefPubMed
go back to reference Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113CrossRefPubMed Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113CrossRefPubMed
go back to reference Garrow TA, Brenner AA, Whitehead VM et al (1993) Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem 268:11910–11916PubMed Garrow TA, Brenner AA, Whitehead VM et al (1993) Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem 268:11910–11916PubMed
go back to reference Hum DW, Bell AW, Rozen R, MacKenzie RE (1988) Primary structure of a human trifunctional enzyme. Isolation of a cDNA encoding methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. J Biol Chem 263:15946–15950PubMed Hum DW, Bell AW, Rozen R, MacKenzie RE (1988) Primary structure of a human trifunctional enzyme. Isolation of a cDNA encoding methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. J Biol Chem 263:15946–15950PubMed
go back to reference Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097CrossRefPubMed Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097CrossRefPubMed
go back to reference Kotb M, Mudd SH, Mato JM et al (1997) Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends Genet 13:51–52CrossRefPubMed Kotb M, Mudd SH, Mato JM et al (1997) Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends Genet 13:51–52CrossRefPubMed
go back to reference Leclerc D, Wilson A, Dumas R et al (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA 95:3059–3064CrossRefPubMed Leclerc D, Wilson A, Dumas R et al (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA 95:3059–3064CrossRefPubMed
go back to reference Li YN, Gulati S, Baker PJ, Brody LC, Banerjee R, Kruger WD (1996) Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum Mol Genet 5:1851–1858CrossRefPubMed Li YN, Gulati S, Baker PJ, Brody LC, Banerjee R, Kruger WD (1996) Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum Mol Genet 5:1851–1858CrossRefPubMed
go back to reference Marti-Carvajal AJ, Sola I, Lathyris D, Salanti G (2009) Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev CD006612 Marti-Carvajal AJ, Sola I, Lathyris D, Salanti G (2009) Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev CD006612
go back to reference Mato JM, Alvarez L, Ortiz P, Pajares MA (1997) S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 73:265–280CrossRefPubMed Mato JM, Alvarez L, Ortiz P, Pajares MA (1997) S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 73:265–280CrossRefPubMed
go back to reference McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56:111–128PubMed McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56:111–128PubMed
go back to reference Moephuli SR, Klein NW, Baldwin MT, Krider HM (1997) Effects of methionine on the cytoplasmic distribution of actin and tubulin during neural tube closure in rat embryos. Proc Natl Acad Sci USA 94:543–548CrossRefPubMed Moephuli SR, Klein NW, Baldwin MT, Krider HM (1997) Effects of methionine on the cytoplasmic distribution of actin and tubulin during neural tube closure in rat embryos. Proc Natl Acad Sci USA 94:543–548CrossRefPubMed
go back to reference Mudd SH, Cantoni GL (1958) Activation of methionine for transmethylation. III. The methionine-activating enzyme of Bakers’ yeast. J Biol Chem 231:481–492PubMed Mudd SH, Cantoni GL (1958) Activation of methionine for transmethylation. III. The methionine-activating enzyme of Bakers’ yeast. J Biol Chem 231:481–492PubMed
go back to reference Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257CrossRefPubMed Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257CrossRefPubMed
go back to reference Pitkin RM (2007) Folate and neural tube defects. Am J Clin Nutr 85:285S–288SPubMed Pitkin RM (2007) Folate and neural tube defects. Am J Clin Nutr 85:285S–288SPubMed
go back to reference Qiu A, Jansen M, Sakaris A et al (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928CrossRefPubMed Qiu A, Jansen M, Sakaris A et al (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928CrossRefPubMed
go back to reference Quere I, Paul V, Rouillac C et al (1999) Spatial and temporal expression of the cystathionine beta-synthase gene during early human development. Biochem Biophys Res Commun 254:127–137CrossRefPubMed Quere I, Paul V, Rouillac C et al (1999) Spatial and temporal expression of the cystathionine beta-synthase gene during early human development. Biochem Biophys Res Commun 254:127–137CrossRefPubMed
go back to reference Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093CrossRefPubMed Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093CrossRefPubMed
go back to reference Smithells RW, Sheppard S, Schorah CJ (1976) Vitamin dificiencies and neural tube defects. Arch Dis Child 51:944–950CrossRefPubMed Smithells RW, Sheppard S, Schorah CJ (1976) Vitamin dificiencies and neural tube defects. Arch Dis Child 51:944–950CrossRefPubMed
go back to reference Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA (1997) Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 345:171–174CrossRefPubMed Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA (1997) Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 345:171–174CrossRefPubMed
go back to reference Ueland PM, Refsum H, Beresford SA, Vollset SE (2000) The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 72:324–332PubMed Ueland PM, Refsum H, Beresford SA, Vollset SE (2000) The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 72:324–332PubMed
go back to reference van der Put NM, Steegers-Theunissen RP, Frosst P et al (1995) Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346:1070–1071CrossRefPubMed van der Put NM, Steegers-Theunissen RP, Frosst P et al (1995) Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346:1070–1071CrossRefPubMed
go back to reference Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338:131–137CrossRef Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338:131–137CrossRef
go back to reference Wang X, Qin X, Demirtas H et al (2007) Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 369:1876–1882CrossRefPubMed Wang X, Qin X, Demirtas H et al (2007) Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 369:1876–1882CrossRefPubMed
go back to reference Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M (1992) Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 44:1898–1901CrossRefPubMed Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M (1992) Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 44:1898–1901CrossRefPubMed
go back to reference Yap S, Boers GH, Wilcken B et al (2001) Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 21:2080–2085CrossRefPubMed Yap S, Boers GH, Wilcken B et al (2001) Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 21:2080–2085CrossRefPubMed
go back to reference Zhao W, Mosley BS, Cleves MA, Melnyk S, James SJ, Hobbs CA (2006) Neural tube defects and maternal biomarkers of folate, homocysteine, and glutathione metabolism. Birth Defects Res A Clin Mol Teratol 76:230–236CrossRefPubMed Zhao W, Mosley BS, Cleves MA, Melnyk S, James SJ, Hobbs CA (2006) Neural tube defects and maternal biomarkers of folate, homocysteine, and glutathione metabolism. Birth Defects Res A Clin Mol Teratol 76:230–236CrossRefPubMed
Metadata
Title
Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects
Authors
Henk J. Blom
Yvo Smulders
Publication date
01-02-2011
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 1/2011
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-010-9177-4

Other articles of this Issue 1/2011

Journal of Inherited Metabolic Disease 1/2011 Go to the issue

Homocysteine and B-Vitamin Metabolism

Choline and betaine in health and disease

Homocysteine and B-Vitamin Metabolism

Cobalamin status in children

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.