Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2023

22-11-2022 | Magnetic Resonance Imaging | Research Article

Concept for gradient-free MRI on twin natural slices

Author: Gordon E. Sarty

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 4/2023

Login to get access

Abstract

Objective

The design of an MRI for use in space requires that the hardware be kept to an absolute minimum in terms of mass, complexity, and power. In addition, NASA requirements are that the external stray field needs to be less than 3.2 Gauss, 7 cm from the MRI enclosure.

Theory

RF encoding designs with Halbach magnets offer the best chance of meeting those requirements. Spatially non-uniform magnetic fields with foliations of isomagnetic surfaces, or natural slices, may be used to provide slice selection, and to reduce further the hardware complexity, for TRansmit Array Spatial Encoding (TRASE) Magnetic Resonance Imaging (MRI) or potentially for other radio frequency (RF) encoding methods. The design of such non-uniform magnetic fields in a Halbach configuration with built-in axial gradients leads to pairs of isomagnetic surfaces centered on either side of a central maximum field strength slice. If TRASE images from slices other than the central isomagnetic surface are desired, then the Nuclear Magnetic Resonance (NMR) signals originating from the twin natural slices must be separated during image reconstruction. Here, a design for simultaneously imaging on twin slices in such an inhomogeneous magnetic field using multiple receiver coils with spatially varying RF profiles is described mathematically and numerical simulation examples are given.

Design approach

To achieve RF encoding on the natural slices, at least three TRASE transmit coils are required. Here a solution with twisted solenoid coils is given. To achieve the twin slice separation at least two receive coils are required. Here a solution with two solenoids is given.

Discussion

The MRI design presented here uses a combination of RF encoding (TRASE), a spatial encoding magnetic field (SEM, pairs of natural slices) and receive coil spatial profiles to encode enough information into the NMR signal for image slice reconstruction. The design presented here enables using Halbach magnets with a built-in axial gradient to be used for MRI.

Conclusion

The result is a new gradient-free TRASE MRI design capable of imaging pairs of electronically selectable axial slices.
Appendix
Available only for authorised users
Footnotes
1
Note that we do not distinguish between “Fourier transform” and “inverse Fourier transform” since that is a matter of arbitrary definition. Of course, it is important in practice to get the sign of the exponent correct, otherwise a mirror image of the intended image results.
 
2
Here, \(P\rho\) is a low resolution version of \(\rho\) with the resolution limited by the extent of k-space covered.
 
3
The units may be considered as meters for a head-size MRI; the 0.1779 number is one used for an actual MRI under development at the time of writing,
 
Literature
1.
go back to reference Sun H, AlZubaidi A, Purchase A, Sharp JC (2020) A geometrically decoupled, twisted solenoid single-axis gradient coil set for TRASE. Magn Reson Med 83:1484–1498CrossRefPubMed Sun H, AlZubaidi A, Purchase A, Sharp JC (2020) A geometrically decoupled, twisted solenoid single-axis gradient coil set for TRASE. Magn Reson Med 83:1484–1498CrossRefPubMed
2.
go back to reference Purchase AR, Vidarsson L, Wachowicz K, Liszkowski P, Sun H, Sarty GE, Sharp JC, Tomanek B (2021) A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9:95294–95303CrossRef Purchase AR, Vidarsson L, Wachowicz K, Liszkowski P, Sun H, Sarty GE, Sharp JC, Tomanek B (2021) A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9:95294–95303CrossRef
3.
go back to reference Cooley CZ, Stockmann JP, Armstrong BD, Sarracanie M, Lev MH, Rosen MS, Wald LL (2015) Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med 73:872–873CrossRefPubMed Cooley CZ, Stockmann JP, Armstrong BD, Sarracanie M, Lev MH, Rosen MS, Wald LL (2015) Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med 73:872–873CrossRefPubMed
4.
go back to reference Cooley CZ, McDaniel PC, Stockmann JP, Srinivas SA, Cauley SF, Śliwiak M, Sappo CR, Vaughn CF, Guerin B, Rosen MS, Lev MH, Wald LL (2021) A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng 5:229–239CrossRefPubMed Cooley CZ, McDaniel PC, Stockmann JP, Srinivas SA, Cauley SF, Śliwiak M, Sappo CR, Vaughn CF, Guerin B, Rosen MS, Lev MH, Wald LL (2021) A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng 5:229–239CrossRefPubMed
5.
go back to reference Sarty GE, Vidarsson L (2018) Magnetic resonance imaging with RF encoding on curved natural slices. Magn Reson Imaging 46:47–55CrossRefPubMed Sarty GE, Vidarsson L (2018) Magnetic resonance imaging with RF encoding on curved natural slices. Magn Reson Imaging 46:47–55CrossRefPubMed
6.
go back to reference Sharp JC, King SB (2010) MRI using radiofrequency magnetic field phase gradients. Magn Reson Med 63:151–161CrossRefPubMed Sharp JC, King SB (2010) MRI using radiofrequency magnetic field phase gradients. Magn Reson Med 63:151–161CrossRefPubMed
7.
go back to reference Sharp JC, King SB, Deng Q, Volotovskyy V, Tomanek B (2013) High-resolution MRI encoding using radiofrequency phase gradients. NMR Biomed 26:1602–1607CrossRefPubMed Sharp JC, King SB, Deng Q, Volotovskyy V, Tomanek B (2013) High-resolution MRI encoding using radiofrequency phase gradients. NMR Biomed 26:1602–1607CrossRefPubMed
8.
go back to reference Sarty GE, Obenaus A (2012) Magnetic resonance imaging of astronauts on the international space station and into the solar system. Can Aeronaut Space J 58:60–68CrossRef Sarty GE, Obenaus A (2012) Magnetic resonance imaging of astronauts on the international space station and into the solar system. Can Aeronaut Space J 58:60–68CrossRef
9.
go back to reference NASA SSP 57000-Revision R-Pressurized payloads interface requirements (2015) NASA SSP 57000-Revision R-Pressurized payloads interface requirements (2015)
10.
go back to reference Halbach K (1980) Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl Instrum Methods 169:1–10CrossRef Halbach K (1980) Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl Instrum Methods 169:1–10CrossRef
11.
go back to reference Raich H, Blümler P (2004) Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMRcMandhalas. Concepts Magn Reson B Magn Reson Eng 23B:16–25CrossRef Raich H, Blümler P (2004) Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMRcMandhalas. Concepts Magn Reson B Magn Reson Eng 23B:16–25CrossRef
12.
go back to reference Cooley CZ, Haskell MW, Cauley SF, Sappo C, Lapierre CD, Ha CG, Stockmann JP, Wald LL (2018) Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans Magn 54:5100112CrossRefPubMed Cooley CZ, Haskell MW, Cauley SF, Sappo C, Lapierre CD, Ha CG, Stockmann JP, Wald LL (2018) Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans Magn 54:5100112CrossRefPubMed
13.
go back to reference Hugon C, Aguiar PM, Aubert G, Sakellariou D (2010) Design, fabrication and evaluation of a low-cost homogeneous portable permanent magnet for NMR and MRI. Comptes Rendus Chimie 13:388–393CrossRef Hugon C, Aguiar PM, Aubert G, Sakellariou D (2010) Design, fabrication and evaluation of a low-cost homogeneous portable permanent magnet for NMR and MRI. Comptes Rendus Chimie 13:388–393CrossRef
14.
go back to reference Ren ZH, Gong J, Huang SY (2019) An irregular-shaped inward-outward ring-pair magnet array with a monotonic field gradient for 2D head imaging in low-field portable MRI. IEEE Access 7:48715–48724CrossRef Ren ZH, Gong J, Huang SY (2019) An irregular-shaped inward-outward ring-pair magnet array with a monotonic field gradient for 2D head imaging in low-field portable MRI. IEEE Access 7:48715–48724CrossRef
15.
go back to reference Deng Q, King SB, Volotovskyy V, Tomanek B, Sharp JC (2013) \(B_{1}\) transmit phase gradient coil for single-axis TRASE RF encoding. Magn Reson Imaging 1:891–899CrossRef Deng Q, King SB, Volotovskyy V, Tomanek B, Sharp JC (2013) \(B_{1}\) transmit phase gradient coil for single-axis TRASE RF encoding. Magn Reson Imaging 1:891–899CrossRef
16.
go back to reference Stockmann JP, Cooley CZ, Guerin B, Rosen MS, Wald LL (2016) Transmit array spatial encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields. J Magn Reson 268:36–48CrossRefPubMedPubMedCentral Stockmann JP, Cooley CZ, Guerin B, Rosen MS, Wald LL (2016) Transmit array spatial encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields. J Magn Reson 268:36–48CrossRefPubMedPubMedCentral
17.
go back to reference Sun H, Yong S, Sharp JC (2019) The twisted solenoid RF phase gradient transmit coil for TRASE imaging. J Magn Reson 299:135–150CrossRefPubMed Sun H, Yong S, Sharp JC (2019) The twisted solenoid RF phase gradient transmit coil for TRASE imaging. J Magn Reson 299:135–150CrossRefPubMed
18.
go back to reference Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast Imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603CrossRefPubMed Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast Imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603CrossRefPubMed
19.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed
20.
go back to reference Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal for multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317CrossRefPubMed Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal for multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317CrossRefPubMed
21.
go back to reference Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M (2008) Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. Magn Reson Mater Phys Biol Med 21:5–14CrossRef Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M (2008) Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. Magn Reson Mater Phys Biol Med 21:5–14CrossRef
22.
go back to reference Bohidar P, Sun H, Sharp JC, Sarty GE (2020) The effects of coupled B1 fields in B1 encoded TRASE MRI—a simulation study. Magn Reson Imaging 74:74–83CrossRefPubMed Bohidar P, Sun H, Sharp JC, Sarty GE (2020) The effects of coupled B1 fields in B1 encoded TRASE MRI—a simulation study. Magn Reson Imaging 74:74–83CrossRefPubMed
23.
go back to reference Sarty GE, Scott A, Piche L, McColgan A, Earnshaw C, Turek K, Liszkowski P, Tomanek B, Sharp JC, Tyson R, Lo K, Volotovskyy V, Yin D (2014) Life science research system on the ISS, wrist magnetic resonance imager: ISS-MRI, study phase final technical report, CSA contract deliverable, June 4 Sarty GE, Scott A, Piche L, McColgan A, Earnshaw C, Turek K, Liszkowski P, Tomanek B, Sharp JC, Tyson R, Lo K, Volotovskyy V, Yin D (2014) Life science research system on the ISS, wrist magnetic resonance imager: ISS-MRI, study phase final technical report, CSA contract deliverable, June 4
24.
go back to reference Hoult DI (1978) The NMR receiver: a description and analysis of design. Progr NMR Spectrosc 12:41–77CrossRef Hoult DI (1978) The NMR receiver: a description and analysis of design. Progr NMR Spectrosc 12:41–77CrossRef
25.
go back to reference Sarty GE (2021) Natural reconstruction coordinates for imperfect TRASE MRI. Linear Algebra Appl 611:94–117CrossRef Sarty GE (2021) Natural reconstruction coordinates for imperfect TRASE MRI. Linear Algebra Appl 611:94–117CrossRef
26.
go back to reference Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci 21:NS-21-43CrossRef Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci 21:NS-21-43CrossRef
27.
go back to reference Sarty GE, Bennett R, Cox RW (2001) Direct reconstruction of non-Cartesian K-space data using a non-uniform fast Fourier transform. Magn Reson Med 45:908–915CrossRefPubMed Sarty GE, Bennett R, Cox RW (2001) Direct reconstruction of non-Cartesian K-space data using a non-uniform fast Fourier transform. Magn Reson Med 45:908–915CrossRefPubMed
28.
go back to reference Sarty GE (1997) The natural K-plane coordinate reconstruction method for magnetic resonance imaging: mathematical foundations. Int J Imaging Syst Technol 8:519–528CrossRef Sarty GE (1997) The natural K-plane coordinate reconstruction method for magnetic resonance imaging: mathematical foundations. Int J Imaging Syst Technol 8:519–528CrossRef
29.
go back to reference Rudin W (2017) Fourier analysis on groups. Dover Publications Inc, Mineola Rudin W (2017) Fourier analysis on groups. Dover Publications Inc, Mineola
30.
go back to reference Bellec J, Liu C-Y, King S, Bidinosti C (2011) A target field approach to the design of RF phase-gradient coils. Proceedings of the international society for magnetic resonance in medicine, vol 19, p 723 Bellec J, Liu C-Y, King S, Bidinosti C (2011) A target field approach to the design of RF phase-gradient coils. Proceedings of the international society for magnetic resonance in medicine, vol 19, p 723
31.
go back to reference Kumaragamage S, Lang M, Ostapchuk D, Bidinosti C (2016) \(B_{1}\) phase gradient coil design for low field exploration of TRASE MRI. In: Proceedings of the ESMRMB 33, magnetic resonance materials in physics, biology and medicine, 29(Suppl 1), p S34 Kumaragamage S, Lang M, Ostapchuk D, Bidinosti C (2016) \(B_{1}\) phase gradient coil design for low field exploration of TRASE MRI. In: Proceedings of the ESMRMB 33, magnetic resonance materials in physics, biology and medicine, 29(Suppl 1), p S34
32.
go back to reference Sarty GE, Kontulainen S, AlZubaidi A, Vidarsson L, Warner G, Piche L, Scott A, Mocanita M, Cameron P, Smith K, Spagnuolo T, Turek K, Liszkowski P, Sharp J (2019) PT11—Magnetic resonance imaging instrument for ankles—final technical report, CSA contract deliverable, January 17 Sarty GE, Kontulainen S, AlZubaidi A, Vidarsson L, Warner G, Piche L, Scott A, Mocanita M, Cameron P, Smith K, Spagnuolo T, Turek K, Liszkowski P, Sharp J (2019) PT11—Magnetic resonance imaging instrument for ankles—final technical report, CSA contract deliverable, January 17
33.
go back to reference Jakob PM, Griswold MA, Edelman RR, Sodickson DK (1998) AUTO-SMASH: a self-calibrating technique for SMASH imaging. Magn Reson Mater Phy 7:42–54CrossRef Jakob PM, Griswold MA, Edelman RR, Sodickson DK (1998) AUTO-SMASH: a self-calibrating technique for SMASH imaging. Magn Reson Mater Phy 7:42–54CrossRef
34.
go back to reference Heidemann RM, Griswold MA, Haase A, Jakob PM (2001) VD-AUTO-SMASH imaging. Magn Reson Med 45:1066–1074CrossRefPubMed Heidemann RM, Griswold MA, Haase A, Jakob PM (2001) VD-AUTO-SMASH imaging. Magn Reson Med 45:1066–1074CrossRefPubMed
35.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed
36.
go back to reference Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224CrossRefPubMed Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224CrossRefPubMed
37.
go back to reference Kartäusch R, Driessle T, Kampf T, Basse-Lüsebrink TC, Hoelscher UC, Jakob PM, Fidler F, Helluy X (2014) Spatial phase encoding exploiting the Bloch–Siegert shift effect. Magn Reson Mater Phy 27:363–371CrossRef Kartäusch R, Driessle T, Kampf T, Basse-Lüsebrink TC, Hoelscher UC, Jakob PM, Fidler F, Helluy X (2014) Spatial phase encoding exploiting the Bloch–Siegert shift effect. Magn Reson Mater Phy 27:363–371CrossRef
38.
go back to reference Torres E, Froelich T, Wang P, DelaBarre L, Mullen M, Adriany G, Pizetta DC, Martins MJ, Vidoto ELG, Tannús A, Garwood M (2022) \(B_{1}\) gradient-based MRI using frequency-modulated Rabi-encoded echoes. Magn Reson Med 87:674–685CrossRefPubMed Torres E, Froelich T, Wang P, DelaBarre L, Mullen M, Adriany G, Pizetta DC, Martins MJ, Vidoto ELG, Tannús A, Garwood M (2022) \(B_{1}\) gradient-based MRI using frequency-modulated Rabi-encoded echoes. Magn Reson Med 87:674–685CrossRefPubMed
Metadata
Title
Concept for gradient-free MRI on twin natural slices
Author
Gordon E. Sarty
Publication date
22-11-2022
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 4/2023
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-022-01047-x

Other articles of this Issue 4/2023

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2023 Go to the issue