Skip to main content
Top
Published in: Journal of Digital Imaging 6/2022

16-06-2022 | Computed Tomography

Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT

Authors: Jinke Wang, Xiangyang Zhang, Peiqing Lv, Haiying Wang, Yuanzhi Cheng

Published in: Journal of Imaging Informatics in Medicine | Issue 6/2022

Login to get access

Abstract

This paper proposes a new network framework, which leverages EfficientNetB4, attention gate, and residual learning techniques to achieve automatic and accurate liver segmentation. First, we use EfficientNetB4 as the encoder to extract more feature information during the encoding stage. Then, an attention gate is introduced in the skip connection to eliminate irrelevant regions and highlight features of a specific segmentation task. Finally, to alleviate the problem of gradient vanishment, we replace the traditional convolution of the decoder with a residual block to improve the segmentation accuracy. We verified the proposed method on the LiTS17 and SLiver07 datasets and compared it with classical networks such as FCN, U-Net, attention U-Net, and attention Res-U-Net. In the Sliver07 evaluation, the proposed method achieved the best segmentation performance on all five standard metrics. Meanwhile, in the LiTS17 assessment, the best performance is obtained except for a slight inferior on RVD. The proposed method’s qualitative and quantitative results demonstrated its applicability in liver segmentation and proved its good prospect in computer-assisted liver segmentation.
Literature
1.
go back to reference Siegel R L, Miller K D, Jemal A . Cancer statistics, 2020[J]. CA: A Cancer Journal for Clinicians, 2020, 70(1). Siegel R L, Miller K D, Jemal A . Cancer statistics, 2020[J]. CA: A Cancer Journal for Clinicians, 2020, 70(1).
2.
go back to reference Gambino O, Vitabile S, Re G L, Tona G L, Librizzi S, Pirrone R, Ardizzone E, Midiri M. Automatic volumetric liver segmentation using texture based region growing[C]//2010 International Conference on Complex, Intelligent and Software Intensive Systems. IEEE, 2010: 146–152. Gambino O, Vitabile S, Re G L, Tona G L, Librizzi S, Pirrone R, Ardizzone E, Midiri M. Automatic volumetric liver segmentation using texture based region growing[C]//2010 International Conference on Complex, Intelligent and Software Intensive Systems. IEEE, 2010: 146–152.
3.
go back to reference Seo K S. Improved fully automatic liver segmentation using histogram tail threshold algorithms[C]//International Conference on Computational Science. Springer, Berlin, Heidelberg, 2005: 822–825. Seo K S. Improved fully automatic liver segmentation using histogram tail threshold algorithms[C]//International Conference on Computational Science. Springer, Berlin, Heidelberg, 2005: 822–825.
4.
go back to reference Li C, Wang X, Eberl S, Fulham M, Yong Y, Chen J. A likelihood and local constraint level set model for liver tumor segmentation from CT volumes[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2967-2977.CrossRefPubMed Li C, Wang X, Eberl S, Fulham M, Yong Y, Chen J. A likelihood and local constraint level set model for liver tumor segmentation from CT volumes[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2967-2977.CrossRefPubMed
5.
go back to reference Shi C, Cheng Y, Wang J, Wang Y, Mori K, Tamura S. Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation [J]. Medical image analysis, 2017, 38: 30-49.CrossRefPubMed Shi C, Cheng Y, Wang J, Wang Y, Mori K, Tamura S. Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation [J]. Medical image analysis, 2017, 38: 30-49.CrossRefPubMed
6.
go back to reference Le T N, Huynh H T. Liver tumor segmentation from MR images using 3D fast marching algorithm and single hidden layer feedforward neural network[J]. BioMed research international, 2016, 2016. Le T N, Huynh H T. Liver tumor segmentation from MR images using 3D fast marching algorithm and single hidden layer feedforward neural network[J]. BioMed research international, 2016, 2016.
7.
go back to reference Singh I, Gupta N. An improved K-means clustering method for liver segmentation[J]. International Journal of Engineering Research & Technology (IJERT), 2015: 235–239. Singh I, Gupta N. An improved K-means clustering method for liver segmentation[J]. International Journal of Engineering Research & Technology (IJERT), 2015: 235–239.
8.
go back to reference Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25: 1097-1105. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25: 1097-1105.
9.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770–778. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770–778.
10.
go back to reference Long J , Shelhamer E , Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651. Long J , Shelhamer E , Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
11.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234–241. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234–241.
12.
go back to reference Zhou Z, Siddiquee M, Tajbakhsh N, Liang J. Unet++: A nested u-net architecture for medical analysis and multimodal learning for clinical decision support image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2018: 3-11.CrossRef Zhou Z, Siddiquee M, Tajbakhsh N, Liang J. Unet++: A nested u-net architecture for medical analysis and multimodal learning for clinical decision support image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2018: 3-11.CrossRef
13.
go back to reference Budak Ü, Guo Y, Tanyildizi E, Şengür A. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation[J]. Medical hypotheses, 2020, 134: 109431.CrossRefPubMed Budak Ü, Guo Y, Tanyildizi E, Şengür A. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation[J]. Medical hypotheses, 2020, 134: 109431.CrossRefPubMed
14.
go back to reference Ben-Cohen A , Diamant I, Klang E, Amitai M, Greenspan H. Fully convolutional network for liver segmentation and lesions detection[M]//Deep learning and data labeling for medical applications. Springer, Cham, 2016: 77-85. Ben-Cohen A , Diamant I, Klang E, Amitai M, Greenspan H. Fully convolutional network for liver segmentation and lesions detection[M]//Deep learning and data labeling for medical applications. Springer, Cham, 2016: 77-85.
15.
go back to reference Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, Jin L, Liu X, Li X, Qian X. Automatic segmentation of liver tumors from multi-phase contrast-enhanced CT images based on FCNs[J]. Artificial intelligence in medicine, 2017, 83: 58-66.CrossRefPubMed Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, Jin L, Liu X, Li X, Qian X. Automatic segmentation of liver tumors from multi-phase contrast-enhanced CT images based on FCNs[J]. Artificial intelligence in medicine, 2017, 83: 58-66.CrossRefPubMed
16.
go back to reference Zhang Y, He Z, Cheng Z, Yang Z, Shi Z. Fully convolutional neural network with post-processing methods for automatic liver segmentation from CT[C]//2017 Chinese Automation Congress (CAC). IEEE, 2017: 3864–3869. Zhang Y, He Z, Cheng Z, Yang Z, Shi Z. Fully convolutional neural network with post-processing methods for automatic liver segmentation from CT[C]//2017 Chinese Automation Congress (CAC). IEEE, 2017: 3864–3869.
17.
go back to reference Jin Q, Meng Z, Sun C, Wei L, Su R. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1471.CrossRef Jin Q, Meng Z, Sun C, Wei L, Su R. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1471.CrossRef
18.
go back to reference Wardhana G, Naghibi H, Sirmacek B, Abayazid M. Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5 D models[J]. International journal of computer assisted radiology and surgery, 2021, 16(1): 41-51.CrossRefPubMed Wardhana G, Naghibi H, Sirmacek B, Abayazid M. Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5 D models[J]. International journal of computer assisted radiology and surgery, 2021, 16(1): 41-51.CrossRefPubMed
19.
go back to reference Li X, Chen H, Qi X, Dou Q, Fu C W, Heng P A. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE transactions on medical imaging, 2018, 37(12): 2663-2674.CrossRefPubMed Li X, Chen H, Qi X, Dou Q, Fu C W, Heng P A. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE transactions on medical imaging, 2018, 37(12): 2663-2674.CrossRefPubMed
20.
go back to reference Lei T, Wang R, Zhang Y, Wan Y, Nandi A K. Defed-net: Deformable encoder-decoder network for liver and liver tumor segmentation[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021. Lei T, Wang R, Zhang Y, Wan Y, Nandi A K. Defed-net: Deformable encoder-decoder network for liver and liver tumor segmentation[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021.
21.
go back to reference Tummala B M, Barpanda S S. Liver tumor segmentation from computed tomography images using multi-scale residual dilated encoder‐decoder network[J]. International Journal of Imaging Systems and Technology, 2021. Tummala B M, Barpanda S S. Liver tumor segmentation from computed tomography images using multi-scale residual dilated encoder‐decoder network[J]. International Journal of Imaging Systems and Technology, 2021.
22.
go back to reference Ma Y D, Liu Q , Qian Z B. Automated image segmentation using improved PCNN model based on cross-entropy[C]// Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004. IEEE, 2005. Ma Y D, Liu Q , Qian Z B. Automated image segmentation using improved PCNN model based on cross-entropy[C]// Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004. IEEE, 2005.
23.
go back to reference Sudre C H, Li W, Vercauteren T, Ourselin, Sébastien, Cardoso M J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2017: 240–248. Sudre C H, Li W, Vercauteren T, Ourselin, Sébastien, Cardoso M J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2017: 240–248.
24.
go back to reference Heimann T, Ginneken B V, Styner M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE transactions on medical imaging, 2009, 28(8): 1251-1265.CrossRefPubMed Heimann T, Ginneken B V, Styner M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE transactions on medical imaging, 2009, 28(8): 1251-1265.CrossRefPubMed
25.
go back to reference Oktay O, Schlemper J, Folgoc L L, Lee M, Heinrich M, Misawa K, Mori K, Mcdonagh S, Hammerla NY, Kainz B. Attention u-net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018. Oktay O, Schlemper J, Folgoc L L, Lee M, Heinrich M, Misawa K, Mori K, Mcdonagh S, Hammerla NY, Kainz B. Attention u-net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:​1804.​03999, 2018.
26.
go back to reference Kaluva K C, Khened M, Kori A, Krishnamurthi G. 2D-densely connected convolution neural networks for automatic liver and tumor segmentation[J]. arXiv preprint arXiv:1802.02182, 2018. Kaluva K C, Khened M, Kori A, Krishnamurthi G. 2D-densely connected convolution neural networks for automatic liver and tumor segmentation[J]. arXiv preprint arXiv:​1802.​02182, 2018.
27.
go back to reference Roth K, Konopczyński T, Hesser J. Liver lesion segmentation with slice-wise 2d tiramisu and tversky loss function[J]. arXiv preprint arXiv:1905.03639, 2019. Roth K, Konopczyński T, Hesser J. Liver lesion segmentation with slice-wise 2d tiramisu and tversky loss function[J]. arXiv preprint arXiv:​1905.​03639, 2019.
28.
go back to reference Yuan Y. Hierarchical convolutional-deconvolutional neural networks for automatic liver and tumor segmentation[J]. arXiv preprint arXiv:1710.04540, 2017. Yuan Y. Hierarchical convolutional-deconvolutional neural networks for automatic liver and tumor segmentation[J]. arXiv preprint arXiv:​1710.​04540, 2017.
Metadata
Title
Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT
Authors
Jinke Wang
Xiangyang Zhang
Peiqing Lv
Haiying Wang
Yuanzhi Cheng
Publication date
16-06-2022
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 6/2022
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-022-00668-x

Other articles of this Issue 6/2022

Journal of Digital Imaging 6/2022 Go to the issue