Skip to main content
Top
Published in: Journal of Digital Imaging 1/2018

01-02-2018

A Hybrid 2D/3D User Interface for Radiological Diagnosis

Authors: Veera Bhadra Harish Mandalika, Alexander I. Chernoglazov, Mark Billinghurst, Christoph Bartneck, Michael A. Hurrell, Niels de Ruiter, Anthony P. H. Butler, Philip H. Butler

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2018

Login to get access

Abstract

This paper presents a novel 2D/3D desktop virtual reality hybrid user interface for radiology that focuses on improving 3D manipulation required in some diagnostic tasks. An evaluation of our system revealed that our hybrid interface is more efficient for novice users and more accurate for both novice and experienced users when compared to traditional 2D only interfaces. This is a significant finding because it indicates, as the techniques mature, that hybrid interfaces can provide significant benefit to image evaluation. Our hybrid system combines a zSpace stereoscopic display with 2D displays, and mouse and keyboard input. It allows the use of 2D and 3D components interchangeably, or simultaneously. The system was evaluated against a 2D only interface with a user study that involved performing a scoliosis diagnosis task. There were two user groups: medical students and radiology residents. We found improvements in completion time for medical students, and in accuracy for both groups. In particular, the accuracy of medical students improved to match that of the residents.
Literature
1.
go back to reference Chen M, Mountford SJ, Sellen A. A study in interactive 3-D rotation using 2-D control devices. ACM SIGGRAPH Computer Graphics 1988;22(4):121–129.CrossRef Chen M, Mountford SJ, Sellen A. A study in interactive 3-D rotation using 2-D control devices. ACM SIGGRAPH Computer Graphics 1988;22(4):121–129.CrossRef
2.
go back to reference Hinckley K, Tullio J, Pausch R, Proffitt D, Kassell N. Usability analysis of 3D rotation techniques. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM; 1997. p. 1–10. Hinckley K, Tullio J, Pausch R, Proffitt D, Kassell N. Usability analysis of 3D rotation techniques. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM; 1997. p. 1–10.
3.
go back to reference Bowman D, Kruijff E, LaViola Jr JJ, Poupyrev IP: 3D User interfaces: theory and practice, CourseSmart eTextbook. Addison-Wesley, 2004. Bowman D, Kruijff E, LaViola Jr JJ, Poupyrev IP: 3D User interfaces: theory and practice, CourseSmart eTextbook. Addison-Wesley, 2004.
4.
go back to reference Graves MJ, Black RT, Lomas DJ. Constrained surface controllers for three-dimensional image data reformatting. Radiology 2009;252(1):218–224.CrossRefPubMed Graves MJ, Black RT, Lomas DJ. Constrained surface controllers for three-dimensional image data reformatting. Radiology 2009;252(1):218–224.CrossRefPubMed
6.
go back to reference Emerson T, Prothero JD, Weghorst SJ: Medicine and virtual reality: a guide to the literature (medVR). Human Interface Technology Laboratory, 1994. Emerson T, Prothero JD, Weghorst SJ: Medicine and virtual reality: a guide to the literature (medVR). Human Interface Technology Laboratory, 1994.
7.
go back to reference Ayache N. Medical computer vision, virtual reality and robotics. Image and Vision Computing 1995;13(4): 295–313.CrossRef Ayache N. Medical computer vision, virtual reality and robotics. Image and Vision Computing 1995;13(4): 295–313.CrossRef
9.
go back to reference Gallo L, Minutolo A, De Pietro G. A user interface for VR-ready 3D medical imaging by off-the-shelf input devices. Computers in Biology and Medicine 2010;40(3):350–358.CrossRefPubMed Gallo L, Minutolo A, De Pietro G. A user interface for VR-ready 3D medical imaging by off-the-shelf input devices. Computers in Biology and Medicine 2010;40(3):350–358.CrossRefPubMed
10.
go back to reference Hand C. A survey of 3D interaction techniques. Computer graphics forum, vol 16 no 5. Wiley; 1997. p. 269–281. Hand C. A survey of 3D interaction techniques. Computer graphics forum, vol 16 no 5. Wiley; 1997. p. 269–281.
11.
go back to reference Shoemake K. Arcball: a user interface for specifying three-dimensional orientation using a mouse. Graphics Interface; 1992. p. 151–156. Shoemake K. Arcball: a user interface for specifying three-dimensional orientation using a mouse. Graphics Interface; 1992. p. 151–156.
12.
go back to reference Henriksen K, Sporring J, Hornbæk K. Virtual trackballs revisited. IEEE Trans Visual Comput Graphics 2004;10(2):206–216.CrossRef Henriksen K, Sporring J, Hornbæk K. Virtual trackballs revisited. IEEE Trans Visual Comput Graphics 2004;10(2):206–216.CrossRef
13.
go back to reference Bade R, Ritter F, Preim B. Usability comparison of mouse-based interaction techniques for predictable 3D rotation. International Symposium on Smart Graphics. Springer; 2005. p. 138–150. Bade R, Ritter F, Preim B. Usability comparison of mouse-based interaction techniques for predictable 3D rotation. International Symposium on Smart Graphics. Springer; 2005. p. 138–150.
14.
go back to reference Hinckley K, Pausch R, Goble JC, Kassell NF. Passive real-world interface props for neurosurgical visualization. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Celebrating Interdependence. ACM; 1994. p. 452–458. Hinckley K, Pausch R, Goble JC, Kassell NF. Passive real-world interface props for neurosurgical visualization. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Celebrating Interdependence. ACM; 1994. p. 452–458.
15.
go back to reference Frohlich B, Plate J, Wind J, Wesche G, Gobel M. Cubic-mouse-based interaction in virtual environments. IEEE Comput Graphics Appl 2000;20(4):12–15.CrossRef Frohlich B, Plate J, Wind J, Wesche G, Gobel M. Cubic-mouse-based interaction in virtual environments. IEEE Comput Graphics Appl 2000;20(4):12–15.CrossRef
16.
go back to reference Gallo L, De Pietro G, Marra I. 3D Interaction with volumetric medical data: experiencing the wiimote. Proceedings of the 1st International Conference on Ambient Media and Systems. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering); 2008. p. 14. Gallo L, De Pietro G, Marra I. 3D Interaction with volumetric medical data: experiencing the wiimote. Proceedings of the 1st International Conference on Ambient Media and Systems. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering); 2008. p. 14.
17.
go back to reference Mauser S, Burgert O. Touch-free, gesture-based control of medical devices and software based on the leap motion controller. Stud Health Technol Inform 2014;196:265–270.PubMed Mauser S, Burgert O. Touch-free, gesture-based control of medical devices and software based on the leap motion controller. Stud Health Technol Inform 2014;196:265–270.PubMed
18.
go back to reference Gallo L, Placitelli AP, Ciampi M. Controller-free exploration of medical image data: Experiencing the Kinect. 2011 24th International Symposium on Computer-based medical systems (CBMS). IEEE; 2011. p. 1–6. Gallo L, Placitelli AP, Ciampi M. Controller-free exploration of medical image data: Experiencing the Kinect. 2011 24th International Symposium on Computer-based medical systems (CBMS). IEEE; 2011. p. 1–6.
19.
go back to reference Ruppert GCS, Reis LO, Amorim PHJ, de Moraes TF, da Silva JVL. Touchless gesture user interface for interactive image visualization in urological surgery. World journal of urology 2012;30(5):687–691.CrossRefPubMed Ruppert GCS, Reis LO, Amorim PHJ, de Moraes TF, da Silva JVL. Touchless gesture user interface for interactive image visualization in urological surgery. World journal of urology 2012;30(5):687–691.CrossRefPubMed
20.
go back to reference Balakrishnan R, Baudel T, Kurtenbach G, Fitzmaurice G. The Rockin’Mouse: integral 3D manipulation on a plane. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems. ACM; 1997. p. 311–318. Balakrishnan R, Baudel T, Kurtenbach G, Fitzmaurice G. The Rockin’Mouse: integral 3D manipulation on a plane. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems. ACM; 1997. p. 311–318.
21.
go back to reference Dang NT, Tavanti M, Rankin I, Cooper M. A comparison of different input devices for a 3D environment. Int J Ind Ergon 2009;39(3):554–563.CrossRef Dang NT, Tavanti M, Rankin I, Cooper M. A comparison of different input devices for a 3D environment. Int J Ind Ergon 2009;39(3):554–563.CrossRef
22.
go back to reference Zudilova-Seinstra EV, de Koning PJ, Suinesiaputra A, van Schooten BW, van der Geest RJ, Reiber JH, Sloot PM. Evaluation of 2D and 3D glove input applied to medical image analysis. Int J Hum Comput Stud 2010;68(6):355–369.CrossRef Zudilova-Seinstra EV, de Koning PJ, Suinesiaputra A, van Schooten BW, van der Geest RJ, Reiber JH, Sloot PM. Evaluation of 2D and 3D glove input applied to medical image analysis. Int J Hum Comput Stud 2010;68(6):355–369.CrossRef
23.
go back to reference Bérard F, Ip J, Benovoy M, El-Shimy D, Blum JR, Cooperstock JR. Did Minority Report get it wrong? Superiority of the mouse over 3D input devices in a 3D placement task. IFIP Conference on Human-Computer Interaction. Springer; 2009. p. 400–414. Bérard F, Ip J, Benovoy M, El-Shimy D, Blum JR, Cooperstock JR. Did Minority Report get it wrong? Superiority of the mouse over 3D input devices in a 3D placement task. IFIP Conference on Human-Computer Interaction. Springer; 2009. p. 400–414.
24.
go back to reference Wang G, McGuffin MJ, Bérard F, Cooperstock JR. Pop-up depth views for improving 3D target acquisition. Proceedings of Graphics Interface 2011. Canadian Human-Computer Communications Society; 2011. p. 41–48. Wang G, McGuffin MJ, Bérard F, Cooperstock JR. Pop-up depth views for improving 3D target acquisition. Proceedings of Graphics Interface 2011. Canadian Human-Computer Communications Society; 2011. p. 41–48.
25.
go back to reference Feiner S, Shamash A. Hybrid user interfaces: breeding virtually bigger interfaces for physically smaller computers. Proceedings of the 4th annual ACM symposium on User interface software and technology. ACM; 1991. p. 9–17. Feiner S, Shamash A. Hybrid user interfaces: breeding virtually bigger interfaces for physically smaller computers. Proceedings of the 4th annual ACM symposium on User interface software and technology. ACM; 1991. p. 9–17.
26.
go back to reference Fitzmaurice GW, Zhai S, Chignell MH. Virtual reality for palmtop computers. ACM Trans Inf Syst (TOIS) 1993;11(3):197–218.CrossRef Fitzmaurice GW, Zhai S, Chignell MH. Virtual reality for palmtop computers. ACM Trans Inf Syst (TOIS) 1993;11(3):197–218.CrossRef
27.
go back to reference Angus IG, Sowizral HA. Embedding the 2D interaction metaphor in a real 3D virtual environment. IS&T/SPIE’s Symposium on Electronic Imaging: Science & Technology. International Society for Optics and Photonics; 1995. p. 282–293. Angus IG, Sowizral HA. Embedding the 2D interaction metaphor in a real 3D virtual environment. IS&T/SPIE’s Symposium on Electronic Imaging: Science & Technology. International Society for Optics and Photonics; 1995. p. 282–293.
28.
go back to reference Hachet M, Guitton P, Reuter P. The CAT for efficient 2D and 3D interaction as an alternative to mouse adaptations. Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM; 2003. p. 225–112. Hachet M, Guitton P, Reuter P. The CAT for efficient 2D and 3D interaction as an alternative to mouse adaptations. Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM; 2003. p. 225–112.
29.
go back to reference Darken RP, Durost R. Mixed-dimension interaction in virtual environments. Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM; 2005. p. 38–45. Darken RP, Durost R. Mixed-dimension interaction in virtual environments. Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM; 2005. p. 38–45.
30.
go back to reference Wang J, Lindeman RW. Object impersonation: towards effective interaction in tablet-and HMD-based hybrid virtual environments. 2015 IEEE Virtual Reality (VR). IEEE; 2015. p. 111–118. Wang J, Lindeman RW. Object impersonation: towards effective interaction in tablet-and HMD-based hybrid virtual environments. 2015 IEEE Virtual Reality (VR). IEEE; 2015. p. 111–118.
31.
go back to reference Wloka M. Interacting with virtual reality. Virtual Prototyping. Springer; 1995. p. 199–212. Wloka M. Interacting with virtual reality. Virtual Prototyping. Springer; 1995. p. 199–212.
32.
go back to reference Coninx K, Van Reeth F, Flerackers E. A hybrid 2D/3D user interface for immersive object modeling. Proceedings of Computer Graphics International, 1997. IEEE; 1997. p. 47–55. Coninx K, Van Reeth F, Flerackers E. A hybrid 2D/3D user interface for immersive object modeling. Proceedings of Computer Graphics International, 1997. IEEE; 1997. p. 47–55.
33.
go back to reference Rekimoto J. Pick-and-drop: a direct manipulation technique for multiple computer environments. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM; 1997. p. 31–39. Rekimoto J. Pick-and-drop: a direct manipulation technique for multiple computer environments. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM; 1997. p. 31–39.
34.
go back to reference Ullmer B, Ishii H. The metaDESK: models and prototypes for tangible user interfaces. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM; 1997. p. 223–232. Ullmer B, Ishii H. The metaDESK: models and prototypes for tangible user interfaces. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM; 1997. p. 223–232.
35.
go back to reference Riva G. Virtual reality for health care: the status of research. Cyberpsychol Behav 2002;5(3):219–225.CrossRefPubMed Riva G. Virtual reality for health care: the status of research. Cyberpsychol Behav 2002;5(3):219–225.CrossRefPubMed
36.
go back to reference Arvanitis TN. Virtual reality in medicine. Handbook of Research on Informatics in Healthcare and Biomedicine. IGI Global; 2006. p. 59–67. Arvanitis TN. Virtual reality in medicine. Handbook of Research on Informatics in Healthcare and Biomedicine. IGI Global; 2006. p. 59–67.
37.
go back to reference Pensieri C, Pennacchini M. Virtual Reality in medicine. Handbook on 3D3C Platforms. Springer; 2016. p. 353–401. Pensieri C, Pennacchini M. Virtual Reality in medicine. Handbook on 3D3C Platforms. Springer; 2016. p. 353–401.
38.
go back to reference Baumgärtner S, Ebert A, Deller M, Agne S. 2D meets 3D: a human-centered interface for visual data exploration. CHI’07 Extended Abstracts on Human Factors in Computing Systems. ACM; 2007. p. 2273–2278. Baumgärtner S, Ebert A, Deller M, Agne S. 2D meets 3D: a human-centered interface for visual data exploration. CHI’07 Extended Abstracts on Human Factors in Computing Systems. ACM; 2007. p. 2273–2278.
39.
go back to reference Bornik A, Beichel R, Kruijff E, Reitinger B, Schmalstieg D. A hybrid user interface for manipulation of volumetric medical data. IEEE Symposium on 3D User Interfaces, 3DUI 2006. IEEE; 2006. p. 29–36. Bornik A, Beichel R, Kruijff E, Reitinger B, Schmalstieg D. A hybrid user interface for manipulation of volumetric medical data. IEEE Symposium on 3D User Interfaces, 3DUI 2006. IEEE; 2006. p. 29–36.
40.
go back to reference Teistler M, Breiman R, Lison T, Bott O, Pretschner D, Aziz A, Nowinski W. Simplifying the exploration of volumetric images: development of a 3D user interface for the radiologist’s workplace. J Digit Imaging 2008;21(1):2–12.CrossRef Teistler M, Breiman R, Lison T, Bott O, Pretschner D, Aziz A, Nowinski W. Simplifying the exploration of volumetric images: development of a 3D user interface for the radiologist’s workplace. J Digit Imaging 2008;21(1):2–12.CrossRef
41.
go back to reference Teistler M, Ampanozi G, Schweitzer W, Flach P, Thali M, Ebert L. Use of a low-cost three-dimensional gaming controller for forensic reconstruction of CT images. J Forensic Radiol Imaging 2016;7:10–13.CrossRef Teistler M, Ampanozi G, Schweitzer W, Flach P, Thali M, Ebert L. Use of a low-cost three-dimensional gaming controller for forensic reconstruction of CT images. J Forensic Radiol Imaging 2016;7:10–13.CrossRef
42.
go back to reference Aamir R, Chernoglazov A, Bateman C, Butler A, Butler P, Anderson N, Bell S, Panta R, Healy J, Mohr J, et al. MARS Spectral molecular imaging of lamb tissue: data collection and image analysis. J Instrum 2014;9(02):P02005.CrossRef Aamir R, Chernoglazov A, Bateman C, Butler A, Butler P, Anderson N, Bell S, Panta R, Healy J, Mohr J, et al. MARS Spectral molecular imaging of lamb tissue: data collection and image analysis. J Instrum 2014;9(02):P02005.CrossRef
43.
go back to reference Rajendran K, Walsh M, De Ruiter N, Chernoglazov A, Panta R, Butler A, Butler P, Bell S, Anderson N, Woodfield T, et al. Reducing beam hardening effects and metal artefacts in spectral CT using medipix3RX. J Instrum 2014;9(03):P03015.CrossRef Rajendran K, Walsh M, De Ruiter N, Chernoglazov A, Panta R, Butler A, Butler P, Bell S, Anderson N, Woodfield T, et al. Reducing beam hardening effects and metal artefacts in spectral CT using medipix3RX. J Instrum 2014;9(03):P03015.CrossRef
44.
go back to reference Rajendran K, Löbker C, Schon BS, Bateman CJ, Younis RA, de Ruiter NJ, Chernoglazov AI, Ramyar M, Hooper GJ, Butler AP, et al. Quantitative imaging of excised osteoarthritic cartilage using spectral CT. Eur Radiol 2017;27(1):384–392.CrossRefPubMed Rajendran K, Löbker C, Schon BS, Bateman CJ, Younis RA, de Ruiter NJ, Chernoglazov AI, Ramyar M, Hooper GJ, Butler AP, et al. Quantitative imaging of excised osteoarthritic cartilage using spectral CT. Eur Radiol 2017;27(1):384–392.CrossRefPubMed
50.
go back to reference Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics. ACM; 1987. p. 163–169. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics. ACM; 1987. p. 163–169.
51.
go back to reference Dai Y, Zheng J, Yang Y, Kuai D, Yang X: Volume-Rendering-Based Interactive 3D measurement for quantitative analysis of 3D medical images. Computational and mathematical methods in medicine, vol 2013, 2013. Dai Y, Zheng J, Yang Y, Kuai D, Yang X: Volume-Rendering-Based Interactive 3D measurement for quantitative analysis of 3D medical images. Computational and mathematical methods in medicine, vol 2013, 2013.
52.
go back to reference Preim B, Tietjen C, Spindler W, Peitgen HO. Integration of measurement tools in medical 3D visualizations. Proceedings of the Conference on Visualization’02. IEEE Computer Society; 2002. p. 21–28. Preim B, Tietjen C, Spindler W, Peitgen HO. Integration of measurement tools in medical 3D visualizations. Proceedings of the Conference on Visualization’02. IEEE Computer Society; 2002. p. 21–28.
54.
go back to reference Brant WE, Helms CA: Fundamentals of diagnostic radiology. Lippincott Williams & Wilkins, 2012. Brant WE, Helms CA: Fundamentals of diagnostic radiology. Lippincott Williams & Wilkins, 2012.
55.
go back to reference Drebin RA, Carpenter L, Hanrahan P. Volume rendering. ACM Siggraph Computer Graphics, vol 22 no 4. ACM; 1988. p. 65–74. Drebin RA, Carpenter L, Hanrahan P. Volume rendering. ACM Siggraph Computer Graphics, vol 22 no 4. ACM; 1988. p. 65–74.
56.
go back to reference Cox GM, Cochran W: Experimental designs. JSTOR, 1953. Cox GM, Cochran W: Experimental designs. JSTOR, 1953.
57.
go back to reference Brooke J, et al. SUS-a quick and dirty usability scale. Usability Evaluation in Industry 1996;189(194):4–7. Brooke J, et al. SUS-a quick and dirty usability scale. Usability Evaluation in Industry 1996;189(194):4–7.
58.
go back to reference Hart SG, Staveland LE. Development of nasa-tlx (task load index): results of empirical and theoretical research. Adv Psychol 1988;52:139–183.CrossRef Hart SG, Staveland LE. Development of nasa-tlx (task load index): results of empirical and theoretical research. Adv Psychol 1988;52:139–183.CrossRef
59.
go back to reference Maxwell SE, Delaney HD. Designing experiments and analyzing data: a model comparison perspective. Psychology Press, vol 1, 2004. Maxwell SE, Delaney HD. Designing experiments and analyzing data: a model comparison perspective. Psychology Press, vol 1, 2004.
60.
go back to reference Hartung J, Knapp G, Sinha BK: Statistical meta-analysis with applications. Wiley, vol 738, 2011. Hartung J, Knapp G, Sinha BK: Statistical meta-analysis with applications. Wiley, vol 738, 2011.
61.
go back to reference Zudilova-Seinstra E, van Schooten B, Suinesiaputra A, van der Geest R, van Dijk B, Reiber J, Sloot P. Exploring individual user differences in the 2D/3D interaction with medical image data. Virtual Reality 2010;14(2):105–118.CrossRef Zudilova-Seinstra E, van Schooten B, Suinesiaputra A, van der Geest R, van Dijk B, Reiber J, Sloot P. Exploring individual user differences in the 2D/3D interaction with medical image data. Virtual Reality 2010;14(2):105–118.CrossRef
62.
go back to reference Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud 2009;4(3):114–123. Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud 2009;4(3):114–123.
63.
go back to reference Patterson RE: Human factors of stereoscopic 3D displays. 1270 Springer, 2015. Patterson RE: Human factors of stereoscopic 3D displays. 1270 Springer, 2015.
64.
go back to reference Frees S, Kessler GD. Precise and rapid interaction through scaled manipulation in immersive virtual environments. IEEE Proceedings of Virtual Reality, 2005. VR 2015. IEEE; 2005. p. 99–106. Frees S, Kessler GD. Precise and rapid interaction through scaled manipulation in immersive virtual environments. IEEE Proceedings of Virtual Reality, 2005. VR 2015. IEEE; 2005. p. 99–106.
Metadata
Title
A Hybrid 2D/3D User Interface for Radiological Diagnosis
Authors
Veera Bhadra Harish Mandalika
Alexander I. Chernoglazov
Mark Billinghurst
Christoph Bartneck
Michael A. Hurrell
Niels de Ruiter
Anthony P. H. Butler
Philip H. Butler
Publication date
01-02-2018
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2018
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-017-0002-6

Other articles of this Issue 1/2018

Journal of Digital Imaging 1/2018 Go to the issue