Skip to main content
Top
Published in: Odontology 2/2011

01-07-2011 | Original Article

Fluoride inhibits the response of bone cells to mechanical loading

Authors: Hubertine M. E. Willems, Ellen G. H. M. van den Heuvel, Seb Castelein, Joost Keverling Buisman, Antonius L. J. J. Bronckers, Astrid D. Bakker, Jenneke Klein-Nulend

Published in: Odontology | Issue 2/2011

Login to get access

Abstract

The response of bone cells to mechanical loading is mediated by the cytoskeleton. Since the bone anabolic agent fluoride disrupts the cytoskeleton, we investigated whether fluoride affects the response of bone cells to mechanical loading, and whether this is cytoskeleton mediated. The mechano-response of osteoblasts was assessed in vitro by measuring pulsating fluid flow-induced nitric oxide (NO) production. Osteocyte shape was determined in hamster mandibles in vivo as parameter of osteocyte mechanosensitivity. Pulsating fluid flow (0.7 ± 0.3 Pa, 5 Hz) stimulated NO production by 8-fold within 5 min. NaF (10–50 μM) inhibited pulsating fluid flow-stimulated NO production after 10 min, and decreased F-actin content by ~3-fold. Fluid flow-induced NO response was also inhibited after F-actin disruption by cytochalasin B. NaF treatment resulted in more elongated, smaller osteocytes in interdental bone in vivo. Our results suggest that fluoride inhibits the mechano-response of bone cells, which might occur via cytoskeletal changes. Since decreased mechanosensitivity reduces bone mass, the reported anabolic effect of fluoride on bone mass in vivo is likely mediated by other factors than changed bone cell mechanosensitivity.
Literature
1.
go back to reference Wollf J. The law of bone remodeling. Berlin: Springer; 1986. Wollf J. The law of bone remodeling. Berlin: Springer; 1986.
2.
go back to reference Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacunocanalicular network. FASEB J. 1999;13:S101–12.PubMed Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacunocanalicular network. FASEB J. 1999;13:S101–12.PubMed
3.
go back to reference Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269:80–2.PubMedCrossRef Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269:80–2.PubMedCrossRef
4.
go back to reference Cowin SC, Weinbaum S. Strain amplification in the bone mechanosensory system. Am J Med Sci. 1998;316:184–8.PubMedCrossRef Cowin SC, Weinbaum S. Strain amplification in the bone mechanosensory system. Am J Med Sci. 1998;316:184–8.PubMedCrossRef
5.
go back to reference Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995;9:441–5.PubMed Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995;9:441–5.PubMed
6.
go back to reference Klein-Nulend J, Helfrich MH, Sterck JGH, MacPherson H, Joldersma M, Ralston SH, Semeins CM, Burger EH. Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun. 1998;250:108–14.PubMedCrossRef Klein-Nulend J, Helfrich MH, Sterck JGH, MacPherson H, Joldersma M, Ralston SH, Semeins CM, Burger EH. Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun. 1998;250:108–14.PubMedCrossRef
7.
go back to reference Bakker AD, Soejima K, Klein-Nulend J, Burger EH. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech. 2001;4:671–7.CrossRef Bakker AD, Soejima K, Klein-Nulend J, Burger EH. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech. 2001;4:671–7.CrossRef
8.
go back to reference Fox SW, Chambers TJ, Chow JW. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol. 1996;270:E955–60.PubMed Fox SW, Chambers TJ, Chow JW. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol. 1996;270:E955–60.PubMed
9.
go back to reference Vezeridis PS, Semeins CM, Chen Q, Klein-Nulend J. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun. 2006;29:1082–8.CrossRef Vezeridis PS, Semeins CM, Chen Q, Klein-Nulend J. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun. 2006;29:1082–8.CrossRef
10.
go back to reference Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nulend J. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone. 2007;41:745–51.PubMedCrossRef Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nulend J. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone. 2007;41:745–51.PubMedCrossRef
11.
go back to reference McGarry JG, Klein-Nulend J, Prendergast PJ. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem Biophys Res Commun. 2005;29:341–8.CrossRef McGarry JG, Klein-Nulend J, Prendergast PJ. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem Biophys Res Commun. 2005;29:341–8.CrossRef
12.
go back to reference Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH. Round versus flat: bone cell morphology, elasticity, and mechanosensing. J Biomech. 2008;41:1590–8.PubMedCrossRef Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH. Round versus flat: bone cell morphology, elasticity, and mechanosensing. J Biomech. 2008;41:1590–8.PubMedCrossRef
13.
go back to reference Murray TM, Harrison JE, Bayley TA, Josse RG, Sturtridge WC, Josse RG, Sturtridge WC, Chow R, Budden F, Laurier L, Pritzker KP, Kandel R. Fluoride treatment of postmenopausal osteoporosis: age, renal function, and other clinical factors in the osteogenic response. J Bone Miner Res. 1990;5:S27–35.PubMedCrossRef Murray TM, Harrison JE, Bayley TA, Josse RG, Sturtridge WC, Josse RG, Sturtridge WC, Chow R, Budden F, Laurier L, Pritzker KP, Kandel R. Fluoride treatment of postmenopausal osteoporosis: age, renal function, and other clinical factors in the osteogenic response. J Bone Miner Res. 1990;5:S27–35.PubMedCrossRef
14.
go back to reference Budden Fh, Bayley TA, Harrison JE, Josse RG, Murray TM, Sturtridge WC, Kandel R, Vieth R, Strauss AL, Goodwin S. The effect of fluoride on bone histology in postmenopausal osteoporosis depends on adequate fluoride absorption and retention. J Bone Miner Res. 1988;3:127–32.PubMedCrossRef Budden Fh, Bayley TA, Harrison JE, Josse RG, Murray TM, Sturtridge WC, Kandel R, Vieth R, Strauss AL, Goodwin S. The effect of fluoride on bone histology in postmenopausal osteoporosis depends on adequate fluoride absorption and retention. J Bone Miner Res. 1988;3:127–32.PubMedCrossRef
15.
go back to reference Lundy MW, Farley JR, Baylink DJ. Characterization of a rapidly responding animal model for fluoride stimulated bone formation. Bone. 1986;7:289–93.PubMedCrossRef Lundy MW, Farley JR, Baylink DJ. Characterization of a rapidly responding animal model for fluoride stimulated bone formation. Bone. 1986;7:289–93.PubMedCrossRef
16.
go back to reference Marie PJ, Hott M. Short term effects of fluoride and strontium on bone formation and resorption in the mouse. Metabolism. 1986;35:547–51.PubMedCrossRef Marie PJ, Hott M. Short term effects of fluoride and strontium on bone formation and resorption in the mouse. Metabolism. 1986;35:547–51.PubMedCrossRef
17.
go back to reference Farley JR, Tarbauw N, Hall S, Baylink DJ. Mitogenic action(s) of fluoride on osteoblastic line cells: determinants of the response in vitro. J Bone Miner Res. 1990;5:S107–13.PubMedCrossRef Farley JR, Tarbauw N, Hall S, Baylink DJ. Mitogenic action(s) of fluoride on osteoblastic line cells: determinants of the response in vitro. J Bone Miner Res. 1990;5:S107–13.PubMedCrossRef
19.
go back to reference Gutteridge DH, Stewart GO, Prince RL, Price RI, Retallack RW, Dhaliwal SS, Stuckey BG, Drury P, Jones CE, Faulkner DL, Kent GN, Bhagat CI, Nicholson GC, Jamrozik K. Randomized trial of sodium fluoride (60 mg) +/− estrogen in postmenopausal osteoporotic vertebral fractures: increased vertebral fractures and peripheral loss but no vertebral fractures. Osteoporos Int. 2002;13:158–70.PubMedCrossRef Gutteridge DH, Stewart GO, Prince RL, Price RI, Retallack RW, Dhaliwal SS, Stuckey BG, Drury P, Jones CE, Faulkner DL, Kent GN, Bhagat CI, Nicholson GC, Jamrozik K. Randomized trial of sodium fluoride (60 mg) +/− estrogen in postmenopausal osteoporotic vertebral fractures: increased vertebral fractures and peripheral loss but no vertebral fractures. Osteoporos Int. 2002;13:158–70.PubMedCrossRef
20.
go back to reference Burgener D, Bonjour JP, Caverzasio J. Fluoride increases tyrosine kinase activity in osteoblast-like cells: regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane. J Bone Miner Res. 1995;10:164–71.PubMedCrossRef Burgener D, Bonjour JP, Caverzasio J. Fluoride increases tyrosine kinase activity in osteoblast-like cells: regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane. J Bone Miner Res. 1995;10:164–71.PubMedCrossRef
21.
go back to reference Kovacs P, Pallinger E, Csaba G. Effects of sodium fluoride (NaF) on the cilia and microtubular system of Tetrahymena. Cell Biochem Funct. 2008;26:591–7.PubMedCrossRef Kovacs P, Pallinger E, Csaba G. Effects of sodium fluoride (NaF) on the cilia and microtubular system of Tetrahymena. Cell Biochem Funct. 2008;26:591–7.PubMedCrossRef
22.
go back to reference Li Y, Decker S, Yuan ZA, Denbesten PK, Aragon MA, Jordan-Sciutto K, Abrams WR, Huh J, McDonald C, Chen E, MacDougall M, Gibson CW. Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts. Arch Oral Biol. 2005;50:681–8.PubMedCrossRef Li Y, Decker S, Yuan ZA, Denbesten PK, Aragon MA, Jordan-Sciutto K, Abrams WR, Huh J, McDonald C, Chen E, MacDougall M, Gibson CW. Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts. Arch Oral Biol. 2005;50:681–8.PubMedCrossRef
23.
go back to reference Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27:339–60.PubMedCrossRef Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27:339–60.PubMedCrossRef
24.
go back to reference Pritchard S, Guilak F. Effects of interleukin-1 on calcium signaling and the increase of filamentous actin in isolated and in situ articular chondrocytes. Arthr Rheum. 2006;54:2164–74.CrossRef Pritchard S, Guilak F. Effects of interleukin-1 on calcium signaling and the increase of filamentous actin in isolated and in situ articular chondrocytes. Arthr Rheum. 2006;54:2164–74.CrossRef
25.
go back to reference Lyaruu DM, Bervoets TJ, Bronckers AL. Short exposure to high levels of fluoride induces stage-dependent structural changes in ameloblasts and enamel mineralization. Eur J Oral Sci. 2006;114(S1):111–5. (discussion 380;127–129).PubMedCrossRef Lyaruu DM, Bervoets TJ, Bronckers AL. Short exposure to high levels of fluoride induces stage-dependent structural changes in ameloblasts and enamel mineralization. Eur J Oral Sci. 2006;114(S1):111–5. (discussion 380;127–129).PubMedCrossRef
26.
go back to reference Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, van Loon JJWA, Klein-Nulend J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun. 2004;315:823–9.PubMedCrossRef Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, van Loon JJWA, Klein-Nulend J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun. 2004;315:823–9.PubMedCrossRef
27.
go back to reference Xu H, Wang C, Zhao Z, Zhang W, Li G, et al. Role of oxidative stress in osteoblasts exposed to sodium fluoride. Biol Trace Elem Res. 2007;123:109–15.CrossRef Xu H, Wang C, Zhao Z, Zhang W, Li G, et al. Role of oxidative stress in osteoblasts exposed to sodium fluoride. Biol Trace Elem Res. 2007;123:109–15.CrossRef
28.
go back to reference Chlubek D. Fluoride and oxidative stress. Fluoride. 2003;36:217–28. Chlubek D. Fluoride and oxidative stress. Fluoride. 2003;36:217–28.
Metadata
Title
Fluoride inhibits the response of bone cells to mechanical loading
Authors
Hubertine M. E. Willems
Ellen G. H. M. van den Heuvel
Seb Castelein
Joost Keverling Buisman
Antonius L. J. J. Bronckers
Astrid D. Bakker
Jenneke Klein-Nulend
Publication date
01-07-2011
Publisher
Springer Japan
Published in
Odontology / Issue 2/2011
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-011-0013-6

Other articles of this Issue 2/2011

Odontology 2/2011 Go to the issue