Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 4/2006

01-12-2006

Electrophysiological Validation of a Human Prototype Auditory Midbrain Implant in a Guinea Pig Model

Authors: Minoo Lenarz, Hubert H. Lim, James F. Patrick, David J. Anderson, Thomas Lenarz

Published in: Journal of the Association for Research in Otolaryngology | Issue 4/2006

Login to get access

Abstract

The auditory midbrain implant (AMI) is a new treatment for hearing restoration in patients with neural deafness or surgically inaccessible cochleae who cannot benefit from cochlear implants (CI). This includes neurofibromatosis type II (NF2) patients who, due to development and/or removal of vestibular schwannomas, usually experience complete damage of their auditory nerves. Although the auditory brainstem implant (ABI) provides sound awareness and aids lip-reading capabilities for these NF2 patients, it generally only achieves hearing performance levels comparable with a single-channel CI. In collaboration with Cochlear Ltd. (Lane Cove, Australia), we developed a human prototype AMI, which is designed for electrical stimulation along the well-defined tonotopic gradient of the inferior colliculus central nucleus (ICC). Considering that better speech perception and hearing performance has been correlated with a greater number of discriminable frequency channels of information available, the ability of the AMI to effectively activate discrete frequency regions within the ICC may enable better hearing performance than achieved by the ABI. Therefore, the goal of this study was to investigate if our AMI array could achieve low-threshold, frequency-specific activation within the ICC, and whether the levels for ICC activation via AMI stimulation were within safe limits for human application. We electrically stimulated different frequency regions within the ICC via the AMI array and recorded the corresponding neural activity in the primary auditory cortex (A1) using a multisite silicon probe in ketamine-anesthetized guinea pigs. Based on our results, AMI stimulation achieves lower thresholds and more localized, frequency-specific activation than CI stimulation. Furthermore, AMI stimulation achieves cortical activation with current levels that are within safe limits for central nervous system stimulation. This study confirms that our AMI design is sufficient for ensuring safe and effective activation of the ICC, and warrants further studies to translate the AMI into clinical application.
Literature
go back to reference Agnew WF, McCreery DB. Effects of prolonged electrical stimulation of the central nervous system. In: Agnew WF and McCreery DB (eds) Neural Prostheses: Fundamental Studies. Englewood Cliffs, Prentice-Hall, Inc., pp. 225–252, 1990. Agnew WF, McCreery DB. Effects of prolonged electrical stimulation of the central nervous system. In: Agnew WF and McCreery DB (eds) Neural Prostheses: Fundamental Studies. Englewood Cliffs, Prentice-Hall, Inc., pp. 225–252, 1990.
go back to reference Aitkin LM, Pettigrew JD, Calford MB, Phillips SC, Wise LZ. Representation of stimulus azimuth by low-frequency neurons in inferior colliculus of the cat. J. Neurophysiol. 53:43–59, 1985.PubMed Aitkin LM, Pettigrew JD, Calford MB, Phillips SC, Wise LZ. Representation of stimulus azimuth by low-frequency neurons in inferior colliculus of the cat. J. Neurophysiol. 53:43–59, 1985.PubMed
go back to reference Ammirati M, Bernardo A, Musumeci A, Bricolo A. Comparison of different infratentorial–supracerebellar approaches to the posterior and middle incisural space: A cadaveric study. J. Neurosurg. 97:922–928, 2002.PubMed Ammirati M, Bernardo A, Musumeci A, Bricolo A. Comparison of different infratentorial–supracerebellar approaches to the posterior and middle incisural space: A cadaveric study. J. Neurosurg. 97:922–928, 2002.PubMed
go back to reference Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetke JF, Xue XL, Zappia JJ, Wise KD. Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans. Biomed. Eng. 36:693–704, 1989.PubMedCrossRef Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetke JF, Xue XL, Zappia JJ, Wise KD. Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans. Biomed. Eng. 36:693–704, 1989.PubMedCrossRef
go back to reference Arenberg JG, Furukawa S, Middlebrooks JC. Auditory cortical images of tones and noise bands. J. Assoc. Res. Otolaryngol. 1:183–194, 2000.PubMedCrossRef Arenberg JG, Furukawa S, Middlebrooks JC. Auditory cortical images of tones and noise bands. J. Assoc. Res. Otolaryngol. 1:183–194, 2000.PubMedCrossRef
go back to reference Bierer JA, Middlebrooks JC. Auditory cortical images of cochlear-implant stimuli: Dependence on electrode configuration. J. Neurophysiol. 87:478–492, 2002.PubMed Bierer JA, Middlebrooks JC. Auditory cortical images of cochlear-implant stimuli: Dependence on electrode configuration. J. Neurophysiol. 87:478–492, 2002.PubMed
go back to reference Brackmann DE, Hitselberger WE, Nelson RA, Moore J, Waring MD, Portillo F, Shannon RV, Telischi FF. Auditory brainstem implant: I. Issues in surgical implantation. Otolaryngol. Head Neck Surg. 108:624–633, 1993.PubMed Brackmann DE, Hitselberger WE, Nelson RA, Moore J, Waring MD, Portillo F, Shannon RV, Telischi FF. Auditory brainstem implant: I. Issues in surgical implantation. Otolaryngol. Head Neck Surg. 108:624–633, 1993.PubMed
go back to reference Brunso-Bechtold JK, Thompson GC, Masterton RB. HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J. Comp. Neurol. 197:705–722, 1981.PubMedCrossRef Brunso-Bechtold JK, Thompson GC, Masterton RB. HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J. Comp. Neurol. 197:705–722, 1981.PubMedCrossRef
go back to reference Cant NB, Benson CG. Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): Differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J. Comp. Neurol. 495:511–528, 2006.PubMedCrossRef Cant NB, Benson CG. Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): Differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J. Comp. Neurol. 495:511–528, 2006.PubMedCrossRef
go back to reference Colletti V, Shannon RV. Open set speech perception with auditory brainstem implant? Laryngoscope 115:1974–1978, 2005.PubMedCrossRef Colletti V, Shannon RV. Open set speech perception with auditory brainstem implant? Laryngoscope 115:1974–1978, 2005.PubMedCrossRef
go back to reference Drake KL, Wise KD, Farraye J, Anderson DJ, BeMent SL. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35:719–732, 1988.PubMedCrossRef Drake KL, Wise KD, Farraye J, Anderson DJ, BeMent SL. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35:719–732, 1988.PubMedCrossRef
go back to reference Ehret G. The auditory midbrain, a “shunting yard” of acoustical information processing. In: Ehret G and Romand R (eds) The Central Auditory System. New York, Oxford University Press, Inc., pp. 259–316, 1997. Ehret G. The auditory midbrain, a “shunting yard” of acoustical information processing. In: Ehret G and Romand R (eds) The Central Auditory System. New York, Oxford University Press, Inc., pp. 259–316, 1997.
go back to reference Evans DG, Huson SM, Donnai D, Neary W, Blair V, Teare D, Newton V, Strachan T, Ramsden R, Harris R. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J. Med. Genet. 29:841–846, 1992.PubMedCrossRef Evans DG, Huson SM, Donnai D, Neary W, Blair V, Teare D, Newton V, Strachan T, Ramsden R, Harris R. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J. Med. Genet. 29:841–846, 1992.PubMedCrossRef
go back to reference Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110:1150–1163, 2001.PubMedCrossRef Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110:1150–1163, 2001.PubMedCrossRef
go back to reference Geniec P, Morest DK. The neuronal architecture of the human posterior colliculus. A study with the Golgi method. Acta. Otolaryngol. Suppl. 295:1–33, 1971.PubMed Geniec P, Morest DK. The neuronal architecture of the human posterior colliculus. A study with the Golgi method. Acta. Otolaryngol. Suppl. 295:1–33, 1971.PubMed
go back to reference Hitotsumatsu T, Matsushima T, Inoue T. Microvascular decompression for treatment of trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia: three surgical approach variations: technical note. Neurosurgery 53:1436–1441; discussion 1442–1433, 2003. Hitotsumatsu T, Matsushima T, Inoue T. Microvascular decompression for treatment of trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia: three surgical approach variations: technical note. Neurosurgery 53:1436–1441; discussion 1442–1433, 2003.
go back to reference Jolly CN, Spelman FA, Clopton BM. Quadrupolar stimulation for cochlear prostheses: Modeling and experimental data. IEEE Trans. Biomed. Eng. 43:857–865, 1996.PubMedCrossRef Jolly CN, Spelman FA, Clopton BM. Quadrupolar stimulation for cochlear prostheses: Modeling and experimental data. IEEE Trans. Biomed. Eng. 43:857–865, 1996.PubMedCrossRef
go back to reference Kral A, Hartmann R, Mortazavi D, Klinke R. Spatial resolution of cochlear implants: The electrical field and excitation of auditory afferents. Hear. Res. 121:11–28, 1998.PubMedCrossRef Kral A, Hartmann R, Mortazavi D, Klinke R. Spatial resolution of cochlear implants: The electrical field and excitation of auditory afferents. Hear. Res. 121:11–28, 1998.PubMedCrossRef
go back to reference Laborde G, Gilsbach JM, Harders A, Seeger W. Experience with the infratentorial supracerebellar approach in lesions of the quadrigeminal region, posterior third ventricle, culmen cerebelli, and cerebellar peduncle. Acta. Neurochir. (Wien) 114:135–138, 1992.CrossRef Laborde G, Gilsbach JM, Harders A, Seeger W. Experience with the infratentorial supracerebellar approach in lesions of the quadrigeminal region, posterior third ventricle, culmen cerebelli, and cerebellar peduncle. Acta. Neurochir. (Wien) 114:135–138, 1992.CrossRef
go back to reference Langner G, Schreiner CE. Topology of functional parameters in the inferior colliculus of the cat. In: Elsner N and Creutzfeldt OD (eds) New Frontiers in Brain Research. Stuttgart, Thieme, p. 122, 1987. Langner G, Schreiner CE. Topology of functional parameters in the inferior colliculus of the cat. In: Elsner N and Creutzfeldt OD (eds) New Frontiers in Brain Research. Stuttgart, Thieme, p. 122, 1987.
go back to reference Langner G, Schreiner CE. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol. 60:1799–1822, 1988.PubMed Langner G, Schreiner CE. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol. 60:1799–1822, 1988.PubMed
go back to reference Lenarz M, Matthies C, Lesinski-Schiedat A, Frohne C, Rost U, Illg A, Battmer RD, Samii M, Lenarz T. Auditory brainstem implant part II: Subjective assessment of functional outcome. Otol. Neurotol. 23:694–697, 2002.PubMedCrossRef Lenarz M, Matthies C, Lesinski-Schiedat A, Frohne C, Rost U, Illg A, Battmer RD, Samii M, Lenarz T. Auditory brainstem implant part II: Subjective assessment of functional outcome. Otol. Neurotol. 23:694–697, 2002.PubMedCrossRef
go back to reference Lenarz T, Reuter G, Paasche G, Lenarz M, Gibson P, Mackiewicz M. Auditory midbrain implant (AMI)—Ein neues therapiekonzept fur neurale taubheit. HNO Info. 28:146, 2003. Lenarz T, Reuter G, Paasche G, Lenarz M, Gibson P, Mackiewicz M. Auditory midbrain implant (AMI)—Ein neues therapiekonzept fur neurale taubheit. HNO Info. 28:146, 2003.
go back to reference Lenarz M, Reuter G, Patrick JF, Lenarz T. Auditory midbrain implant—design and evaluation. Assoc. Res. Otolaryngol. Abstr. 27:160, 2004. Lenarz M, Reuter G, Patrick JF, Lenarz T. Auditory midbrain implant—design and evaluation. Assoc. Res. Otolaryngol. Abstr. 27:160, 2004.
go back to reference Lenarz T, Lim HH, Reuter G, Patrick JF, Lenarz M. The auditory midbrain implant: A new auditory prosthesis for neural deafness—concept and device description. Otol. Neurotol. 27:840–845, 2006.CrossRef Lenarz T, Lim HH, Reuter G, Patrick JF, Lenarz M. The auditory midbrain implant: A new auditory prosthesis for neural deafness—concept and device description. Otol. Neurotol. 27:840–845, 2006.CrossRef
go back to reference Lim HH, Anderson DJ. Feasibility experiments for the development of a midbrain auditory prosthesis. Proc 1st Internat IEEE EMBS Conf Neural Eng, Capri Island, Italy, pp. 193–196, 2003. Lim HH, Anderson DJ. Feasibility experiments for the development of a midbrain auditory prosthesis. Proc 1st Internat IEEE EMBS Conf Neural Eng, Capri Island, Italy, pp. 193–196, 2003.
go back to reference Lim HH, Anderson DJ. Auditory cortical responses to electrical stimulation of the inferior colliculus: Implications for an auditory midbrain implant. J. Neurophysiol. 96:975–988, 2006.PubMedCrossRef Lim HH, Anderson DJ. Auditory cortical responses to electrical stimulation of the inferior colliculus: Implications for an auditory midbrain implant. J. Neurophysiol. 96:975–988, 2006.PubMedCrossRef
go back to reference Loftus WC, Bishop DC, Saint Marie RL, Oliver DL. Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. J. Comp. Neurol. 472:330–344, 2004.PubMedCrossRef Loftus WC, Bishop DC, Saint Marie RL, Oliver DL. Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. J. Comp. Neurol. 472:330–344, 2004.PubMedCrossRef
go back to reference Lu T, Wang X. Information content of auditory cortical responses to time-varying acoustic stimuli. J. Neurophysiol. 91:301–313, 2004.PubMedCrossRef Lu T, Wang X. Information content of auditory cortical responses to time-varying acoustic stimuli. J. Neurophysiol. 91:301–313, 2004.PubMedCrossRef
go back to reference Lu T, Liang L, Wang X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4:1131–1138, 2001.PubMedCrossRef Lu T, Liang L, Wang X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4:1131–1138, 2001.PubMedCrossRef
go back to reference Malmierca MS, Rees A, Le Beau FE, Bjaalie JG. Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. J. Comp. Neurol. 357:124–144, 1995.PubMedCrossRef Malmierca MS, Rees A, Le Beau FE, Bjaalie JG. Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. J. Comp. Neurol. 357:124–144, 1995.PubMedCrossRef
go back to reference McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37:996–1001, 1990.PubMedCrossRef McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37:996–1001, 1990.PubMedCrossRef
go back to reference McIntyre CC, Grill WM. Selective microstimulation of central nervous system neurons. Ann. Biomed. Eng. 28:219–233, 2000.PubMedCrossRef McIntyre CC, Grill WM. Selective microstimulation of central nervous system neurons. Ann. Biomed. Eng. 28:219–233, 2000.PubMedCrossRef
go back to reference Merzenich MM, Reid MD. Representation of the cochlea within the inferior colliculus of the cat. Brain Res. 77:397–415, 1974.PubMedCrossRef Merzenich MM, Reid MD. Representation of the cochlea within the inferior colliculus of the cat. Brain Res. 77:397–415, 1974.PubMedCrossRef
go back to reference Morest DK, Oliver DL. The neuronal architecture of the inferior colliculus in the cat: Defining the functional anatomy of the auditory midbrain. J. Comp. Neurol. 222:209–236, 1984.PubMedCrossRef Morest DK, Oliver DL. The neuronal architecture of the inferior colliculus in the cat: Defining the functional anatomy of the auditory midbrain. J. Comp. Neurol. 222:209–236, 1984.PubMedCrossRef
go back to reference Najafi K, Wise KD, Mochizuki T. A high-yield IC-compatible multichannel recording array. IEEE Trans. Electron. Dev. 32:1206–1211, 1985. Najafi K, Wise KD, Mochizuki T. A high-yield IC-compatible multichannel recording array. IEEE Trans. Electron. Dev. 32:1206–1211, 1985.
go back to reference Ogata N, Yonekawa Y. Paramedian supracerebellar approach to the upper brain stem and peduncular lesions. Neurosurgery 40:101–104; discussion 104–105, 1997. Ogata N, Yonekawa Y. Paramedian supracerebellar approach to the upper brain stem and peduncular lesions. Neurosurgery 40:101–104; discussion 104–105, 1997.
go back to reference Oliver DL. Neuronal organization in the inferior colliculus. In: Winer JA and Schreiner CE (eds) The Inferior Colliculus. New York, Springer Science+Business Media, Inc., pp. 69–114, 2005.CrossRef Oliver DL. Neuronal organization in the inferior colliculus. In: Winer JA and Schreiner CE (eds) The Inferior Colliculus. New York, Springer Science+Business Media, Inc., pp. 69–114, 2005.CrossRef
go back to reference Oliver DL, Morest DK. The central nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 222:237–264, 1984.PubMedCrossRef Oliver DL, Morest DK. The central nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 222:237–264, 1984.PubMedCrossRef
go back to reference Oliver DL, Beckius GE, Bishop DC, Kuwada S. Simultaneous anterograde labeling of axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior colliculus of cat. J. Comp. Neurol. 382:215–229, 1997.PubMedCrossRef Oliver DL, Beckius GE, Bishop DC, Kuwada S. Simultaneous anterograde labeling of axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior colliculus of cat. J. Comp. Neurol. 382:215–229, 1997.PubMedCrossRef
go back to reference Otto SR, Brackmann DE, Hitselberger WE, Shannon RV, Kuchta J. Multichannel auditory brainstem implant: Update on performance in 61 patients. J. Neurosurg. 96:1063–1071, 2002.PubMedCrossRef Otto SR, Brackmann DE, Hitselberger WE, Shannon RV, Kuchta J. Multichannel auditory brainstem implant: Update on performance in 61 patients. J. Neurosurg. 96:1063–1071, 2002.PubMedCrossRef
go back to reference Ramachandran R, May BJ. Functional segregation of ITD sensitivity in the inferior colliculus of decerebrate cats. J. Neurophysiol. 88:2251–2261, 2002.PubMedCrossRef Ramachandran R, May BJ. Functional segregation of ITD sensitivity in the inferior colliculus of decerebrate cats. J. Neurophysiol. 88:2251–2261, 2002.PubMedCrossRef
go back to reference Redies H, Sieben U, Creutzfeldt OD. Functional subdivisions in the auditory cortex of the guinea pig. J. Comp. Neurol. 282:473–488, 1989.PubMedCrossRef Redies H, Sieben U, Creutzfeldt OD. Functional subdivisions in the auditory cortex of the guinea pig. J. Comp. Neurol. 282:473–488, 1989.PubMedCrossRef
go back to reference Rockel AJ, Jones EG. The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J. Comp. Neurol. 147:11–60, 1973.PubMedCrossRef Rockel AJ, Jones EG. The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J. Comp. Neurol. 147:11–60, 1973.PubMedCrossRef
go back to reference Rose JE, Greenwood DD, Goldberg JM, Hind JE. Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. J. Neurophysiol. 26:294–320, 1963. Rose JE, Greenwood DD, Goldberg JM, Hind JE. Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. J. Neurophysiol. 26:294–320, 1963.
go back to reference Roth GL, Aitkin LM, Andersen RA, Merzenich MM. Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J. Comp. Neurol. 182:661–680, 1978.PubMedCrossRef Roth GL, Aitkin LM, Andersen RA, Merzenich MM. Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J. Comp. Neurol. 182:661–680, 1978.PubMedCrossRef
go back to reference Samii M, Carvalho GA, Tatagiba M, Matthies C, Vorkapic P. Meningiomas of the tentorial notch: Surgical anatomy and management. J. Neurosurg. 84:375–381, 1996.PubMedCrossRef Samii M, Carvalho GA, Tatagiba M, Matthies C, Vorkapic P. Meningiomas of the tentorial notch: Surgical anatomy and management. J. Neurosurg. 84:375–381, 1996.PubMedCrossRef
go back to reference Schreiner CE, Langner G. Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J. Neurophysiol. 60:1823–1840, 1988.PubMed Schreiner CE, Langner G. Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J. Neurophysiol. 60:1823–1840, 1988.PubMed
go back to reference Schreiner CE, Langner G. Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386, 1997.PubMedCrossRef Schreiner CE, Langner G. Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386, 1997.PubMedCrossRef
go back to reference Schwartz MS, Otto SR, Brackmann DE, Hitselberger WE, Shannon RV. Use of a multichannel auditory brainstem implant for neurofibromatosis type 2. Stereotact. Funct. Neurosurg. 81:110–114, 2003.PubMedCrossRef Schwartz MS, Otto SR, Brackmann DE, Hitselberger WE, Shannon RV. Use of a multichannel auditory brainstem implant for neurofibromatosis type 2. Stereotact. Funct. Neurosurg. 81:110–114, 2003.PubMedCrossRef
go back to reference Serviere J, Webster WR, Calford MB. Isofrequency labelling revealed by a combined [14C]-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat. J. Comp. Neurol. 228:463–477, 1984.PubMedCrossRef Serviere J, Webster WR, Calford MB. Isofrequency labelling revealed by a combined [14C]-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat. J. Comp. Neurol. 228:463–477, 1984.PubMedCrossRef
go back to reference Shannon RV. A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39:424–426, 1992.PubMedCrossRef Shannon RV. A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39:424–426, 1992.PubMedCrossRef
go back to reference Shannon RV, Fayad J, Moore J, Lo WW, Otto S, Nelson RA, O’Leary M. Auditory brainstem implant: II. Postsurgical issues and performance. Otolaryngol. Head Neck Surg. 108:634–642, 1993.PubMed Shannon RV, Fayad J, Moore J, Lo WW, Otto S, Nelson RA, O’Leary M. Auditory brainstem implant: II. Postsurgical issues and performance. Otolaryngol. Head Neck Surg. 108:634–642, 1993.PubMed
go back to reference Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science 270:303–304, 1995.PubMedCrossRef Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science 270:303–304, 1995.PubMedCrossRef
go back to reference Shneiderman A, Henkel CK. Banding of lateral superior olivary nucleus afferents in the inferior colliculus: A possible substrate for sensory integration. J. Comp. Neurol. 266:519–534, 1987.PubMedCrossRef Shneiderman A, Henkel CK. Banding of lateral superior olivary nucleus afferents in the inferior colliculus: A possible substrate for sensory integration. J. Comp. Neurol. 266:519–534, 1987.PubMedCrossRef
go back to reference Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90, 2002.PubMedCrossRef Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90, 2002.PubMedCrossRef
go back to reference Snyder RL, Bierer JA, Middlebrooks JC. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J. Assoc. Res. Otolaryngol. 5:305–322, 2004.PubMedCrossRef Snyder RL, Bierer JA, Middlebrooks JC. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J. Assoc. Res. Otolaryngol. 5:305–322, 2004.PubMedCrossRef
go back to reference Stein BM. Supracerebellar–infratentorial approach to pineal tumors. Surg. Neurol. 11:331–337, 1979.PubMed Stein BM. Supracerebellar–infratentorial approach to pineal tumors. Surg. Neurol. 11:331–337, 1979.PubMed
go back to reference Stiebler I. Tone-threshold mapping in the inferior colliculus of the house mouse. Neurosci. Lett. 65:336–340, 1986.PubMedCrossRef Stiebler I. Tone-threshold mapping in the inferior colliculus of the house mouse. Neurosci. Lett. 65:336–340, 1986.PubMedCrossRef
go back to reference Stiebler I, Ehret G. Inferior colliculus of the house mouse. I. A quantitative study of tonotopic organization, frequency representation, and tone-threshold distribution. J. Comp. Neurol. 238:65–76, 1985.PubMedCrossRef Stiebler I, Ehret G. Inferior colliculus of the house mouse. I. A quantitative study of tonotopic organization, frequency representation, and tone-threshold distribution. J. Comp. Neurol. 238:65–76, 1985.PubMedCrossRef
go back to reference Suta D, Kvasnak E, Popelar J, Syka J. Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. J. Neurophysiol. 90:3794–3808, 2003.PubMedCrossRef Suta D, Kvasnak E, Popelar J, Syka J. Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. J. Neurophysiol. 90:3794–3808, 2003.PubMedCrossRef
go back to reference Syka J, Popelar J, Kvasnak E, Astl J. Response properties of neurons in the central nucleus and external and dorsal cortices of the inferior colliculus in guinea pig. Exp. Brain Res. 133:254–266, 2000.PubMedCrossRef Syka J, Popelar J, Kvasnak E, Astl J. Response properties of neurons in the central nucleus and external and dorsal cortices of the inferior colliculus in guinea pig. Exp. Brain Res. 133:254–266, 2000.PubMedCrossRef
go back to reference Ulm AJ, Tanriover N, Kawashima M, Campero A, Bova FJ, Rhoton A, Jr. Microsurgical approaches to the perimesencephalic cisterns and related segments of the posterior cerebral artery: comparison using a novel application of image guidance. Neurosurgery 54:1313–1327; discussion 1327–1318, 2004. Ulm AJ, Tanriover N, Kawashima M, Campero A, Bova FJ, Rhoton A, Jr. Microsurgical approaches to the perimesencephalic cisterns and related segments of the posterior cerebral artery: comparison using a novel application of image guidance. Neurosurgery 54:1313–1327; discussion 1327–1318, 2004.
go back to reference Wallace MN, Rutkowski RG, Palmer AR. Identification and localisation of auditory areas in guinea pig cortex. Exp. Brain Res. 132:445–456, 2000.PubMedCrossRef Wallace MN, Rutkowski RG, Palmer AR. Identification and localisation of auditory areas in guinea pig cortex. Exp. Brain Res. 132:445–456, 2000.PubMedCrossRef
Metadata
Title
Electrophysiological Validation of a Human Prototype Auditory Midbrain Implant in a Guinea Pig Model
Authors
Minoo Lenarz
Hubert H. Lim
James F. Patrick
David J. Anderson
Thomas Lenarz
Publication date
01-12-2006
Publisher
Springer-Verlag
Published in
Journal of the Association for Research in Otolaryngology / Issue 4/2006
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-006-0056-5

Other articles of this Issue 4/2006

Journal of the Association for Research in Otolaryngology 4/2006 Go to the issue

Erratum

Erratum