Skip to main content
Top
Published in: Gastric Cancer 4/2019

01-07-2019 | Gastric Cancer | Original Article

MiR-6872 host gene SEMA3B and its antisense lncRNA SEMA3B-AS1 function synergistically to suppress gastric cardia adenocarcinoma progression

Authors: Wei Guo, Xiaoliang Liang, Lei Liu, Yanli Guo, Supeng Shen, Jia Liang, Zhiming Dong

Published in: Gastric Cancer | Issue 4/2019

Login to get access

Abstract

Background

Semaphorin 3B (SEMA3B) is frequently inactivated in several carcinomas. However, as the host gene of miR-6872, the roles of SEMA3B, antisense lncRNA SEMA3B-AS1, and miR-6872 in gastric cardia adenocarcinoma (GCA) tumorigenesis have not been clarified.

Methods

The expression levels of SEMA3B, SEMA3B-AS1, and miR-6872 were respectively detected by qRT-PCR, western blot, or immunohistochemical staining assays. The methylation status was determined by BGS and BS-MSP methods. In vitro assays were preformed to explore the biological effects of SEMA3B, SEMA3B-AS1, and miR-6872-5p in gastric cancer cells. Chromatin immunoprecipitation assay was used to detect the binding of protein to DNA. The interaction of SEMA3B-AS1 with MLL4 was identified by RNA immunoprecipitation and RNA pull-down assays.

Results

Frequent downregulation of SEMA3B, SEMA3B-AS1, and miR-6872 was detected in GCA tissues and gastric cancer cells. Aberrant hypermethylation of the promoter region was more tumor specific and was negatively correlated with the expression level of SEMA3B, SEMA3B-AS1, and miR-6872-5p. Transcription factor Sp1 activated SEMA3B or SEMA3B-AS1 transcription and CpG sites hypermethylation within promoter region eliminated Sp1 binding ability. Overexpression of SEMA3B and SEMA3B-AS1 inhibited gastric cancer cell proliferation, migration, and invasion in vitro. SEMA3B-AS1 induced the expression of SEMA3B by interacting with MLL4. ZNF143 might be the target gene of miR-6872-5p and miR-6872-5p functioning synergistically with SEMA3B to suppress cell invasion. Furthermore, SEMA3B, SEMA3B-AS1, and miR-6872-5p expression levels were associated with GCA patients’ survival.

Conclusions

SEMA3B, SEMA3B-AS1, and miR-6872 may act as tumor suppressors and may serve as potential targets for antitumor therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vial M, Grande L, Pera M. Epidemiology of adenocarcinoma of the esophagus, gastric cardia, and uppergastric third. Recent Results Cancer Res. 2010;182:1–17.PubMed Vial M, Grande L, Pera M. Epidemiology of adenocarcinoma of the esophagus, gastric cardia, and uppergastric third. Recent Results Cancer Res. 2010;182:1–17.PubMed
2.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
3.
go back to reference Chow WH, Finkle WD, McLaughlin JK, Frankl H, Ziel HK, Fraumeni JF. The relation of gastroesophageal reflux disease and its treatment to adenocarcinomas of the esophagus and gastric cardia. JAMA. 1995;274:474–7.CrossRefPubMed Chow WH, Finkle WD, McLaughlin JK, Frankl H, Ziel HK, Fraumeni JF. The relation of gastroesophageal reflux disease and its treatment to adenocarcinomas of the esophagus and gastric cardia. JAMA. 1995;274:474–7.CrossRefPubMed
4.
go back to reference Wang LD, Zheng S, Zheng ZY, Casson AG. Primary adenocarcinomas of lower esophagus, esophagogastric junction and gastric cardia: in special reference to China. World J Gastroenterol. 2003;9:1156–64.CrossRefPubMedPubMedCentral Wang LD, Zheng S, Zheng ZY, Casson AG. Primary adenocarcinomas of lower esophagus, esophagogastric junction and gastric cardia: in special reference to China. World J Gastroenterol. 2003;9:1156–64.CrossRefPubMedPubMedCentral
5.
go back to reference Plummer M, Franceschi S, Vignat J, Forman D, de Martel C. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer. 2015;136:487–90.CrossRefPubMed Plummer M, Franceschi S, Vignat J, Forman D, de Martel C. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer. 2015;136:487–90.CrossRefPubMed
6.
go back to reference Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60:1949–60.PubMed Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60:1949–60.PubMed
7.
go back to reference Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The international lung cancer chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 2000;60:6116–33.PubMed Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The international lung cancer chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 2000;60:6116–33.PubMed
8.
go back to reference Chen J, Brevet A, Blanquet S, Plateau P. Control of 5′,5′-dinucleoside triphosphate catabolism by APH1, a Saccharomyces cerevisiae analog of human FHIT. J Bacteriol. 1998;180:2345–9.PubMedPubMedCentral Chen J, Brevet A, Blanquet S, Plateau P. Control of 5′,5′-dinucleoside triphosphate catabolism by APH1, a Saccharomyces cerevisiae analog of human FHIT. J Bacteriol. 1998;180:2345–9.PubMedPubMedCentral
9.
go back to reference Yue W, Dacic S, Sun Q, Landreneau R, Guo M, Zhou W, et al. Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res. 2007;13:4336–44.CrossRefPubMed Yue W, Dacic S, Sun Q, Landreneau R, Guo M, Zhou W, et al. Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res. 2007;13:4336–44.CrossRefPubMed
10.
go back to reference Guo W, Dong Z, Chen Z, Yang Z, Wen D, Kuang G, et al. Aberrant CpG Island hypermethylation of RASSF1A in gastric cardia adenocarcinoma. Cancer Invest. 2009;27:459–65.CrossRefPubMed Guo W, Dong Z, Chen Z, Yang Z, Wen D, Kuang G, et al. Aberrant CpG Island hypermethylation of RASSF1A in gastric cardia adenocarcinoma. Cancer Invest. 2009;27:459–65.CrossRefPubMed
11.
go back to reference Loginov VI, Dmitriev AA, Senchenko VN, Pronina IV, Khodyrev DS, Kudryavtseva AV, et al. Tumor suppressor function of the SEMA3B Gene in human lung and renal cancers. PLoS One. 2015;10:e0123369.CrossRefPubMedPubMedCentral Loginov VI, Dmitriev AA, Senchenko VN, Pronina IV, Khodyrev DS, Kudryavtseva AV, et al. Tumor suppressor function of the SEMA3B Gene in human lung and renal cancers. PLoS One. 2015;10:e0123369.CrossRefPubMedPubMedCentral
13.
go back to reference Castro-Rivera E, Ran S, Brekken RA, Minna JD. Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008;68:8295–303.CrossRefPubMedPubMedCentral Castro-Rivera E, Ran S, Brekken RA, Minna JD. Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008;68:8295–303.CrossRefPubMedPubMedCentral
14.
go back to reference Chen R, Zhuge X, Huang Z, Lu D, Ye X, Chen C, et al. Analysis of SEMA3B methylation and expression patterns in gastric cancer tissue and cell lines. Oncol Rep. 2014;31:1211–8.CrossRefPubMed Chen R, Zhuge X, Huang Z, Lu D, Ye X, Chen C, et al. Analysis of SEMA3B methylation and expression patterns in gastric cancer tissue and cell lines. Oncol Rep. 2014;31:1211–8.CrossRefPubMed
15.
go back to reference Riquelme E, Tang M, Baez S, Diaz A, Pruyas M, Wistuba II, et al. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma. Cancer Lett. 2007;250:100–6.CrossRefPubMed Riquelme E, Tang M, Baez S, Diaz A, Pruyas M, Wistuba II, et al. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma. Cancer Lett. 2007;250:100–6.CrossRefPubMed
16.
go back to reference Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 1993;75:217–27.CrossRefPubMed Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 1993;75:217–27.CrossRefPubMed
17.
go back to reference Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, Gray MJ, et al. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res. 2009;15:6763–70.CrossRefPubMed Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, Gray MJ, et al. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res. 2009;15:6763–70.CrossRefPubMed
18.
go back to reference Grote HJ, Schmiemann V, Geddert H, Rohr UP, Kappes R, Gabbert HE, et al. Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. Int J Cancer. 2005;116:720–5.CrossRefPubMed Grote HJ, Schmiemann V, Geddert H, Rohr UP, Kappes R, Gabbert HE, et al. Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. Int J Cancer. 2005;116:720–5.CrossRefPubMed
19.
go back to reference Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Williams NN, et al. Allelic loss on chromosome 3p21.3 and promoter hypermethylation of semaphorin 3B in non-small cell lung cancer. Cancer Res. 2003;63:3352–5.PubMed Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Williams NN, et al. Allelic loss on chromosome 3p21.3 and promoter hypermethylation of semaphorin 3B in non-small cell lung cancer. Cancer Res. 2003;63:3352–5.PubMed
20.
go back to reference Ito M, Ito G, Kondo M, Uchiyama M, Fukui T, Mori S, et al. Frequent inactivation of RASSF1A, BLU, and SEMA3B on 3p21.3 by promoter hypermethylation and allele loss in non-small cell lung cancer. Cancer Lett. 2005;225:131–9.CrossRefPubMed Ito M, Ito G, Kondo M, Uchiyama M, Fukui T, Mori S, et al. Frequent inactivation of RASSF1A, BLU, and SEMA3B on 3p21.3 by promoter hypermethylation and allele loss in non-small cell lung cancer. Cancer Lett. 2005;225:131–9.CrossRefPubMed
21.
22.
go back to reference Gao X, Qiao Y, Han D, Zhang Y, Ma N. Enemy or partner: relationship between intronic micrornas and their host genes. IUBMB Life. 2012;64:835–40.CrossRefPubMed Gao X, Qiao Y, Han D, Zhang Y, Ma N. Enemy or partner: relationship between intronic micrornas and their host genes. IUBMB Life. 2012;64:835–40.CrossRefPubMed
23.
go back to reference Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39.CrossRefPubMed Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39.CrossRefPubMed
24.
go back to reference Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208.CrossRefPubMedPubMedCentral Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208.CrossRefPubMedPubMedCentral
26.
go back to reference Amin V, Harris RA, Onuchic V, Jackson AR, Charnecki T, Paithankar S, et al. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nat Commun. 2015;6:6370.CrossRefPubMed Amin V, Harris RA, Onuchic V, Jackson AR, Charnecki T, Paithankar S, et al. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nat Commun. 2015;6:6370.CrossRefPubMed
27.
go back to reference Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, et al. LncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell. 2018;33:706–20.CrossRefPubMedPubMedCentral Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, et al. LncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell. 2018;33:706–20.CrossRefPubMedPubMedCentral
28.
go back to reference Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg. 1998;85:1457–9.CrossRefPubMed Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg. 1998;85:1457–9.CrossRefPubMed
29.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
30.
go back to reference Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet. 2005;37:265–74.CrossRefPubMed Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet. 2005;37:265–74.CrossRefPubMed
31.
go back to reference Loginov VI, Khodyrev DS, Pronina IV, Maliukova AV, Kazubskaia TP, Ermilova VD, et al. Two CpG-islands of SEMA3B gene: methylation in clear cell renal cell carcinoma. Mol Biol (Mosk). 2009;43:1088–92. Loginov VI, Khodyrev DS, Pronina IV, Maliukova AV, Kazubskaia TP, Ermilova VD, et al. Two CpG-islands of SEMA3B gene: methylation in clear cell renal cell carcinoma. Mol Biol (Mosk). 2009;43:1088–92.
32.
go back to reference Dhar SS, Zhao D, Lin T, Gu B, Pal K, Wu SJ, et al. MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Mol Cell. 2018;70:825–41.CrossRefPubMedPubMedCentral Dhar SS, Zhao D, Lin T, Gu B, Pal K, Wu SJ, et al. MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Mol Cell. 2018;70:825–41.CrossRefPubMedPubMedCentral
33.
go back to reference Ananthanarayanan M, Li Y, Surapureddi S, Balasubramaniyan N, Ahn J, Goldstein JA, et al. Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am J Physiol Gastrointest Liver Physiol. 2011;300:G771–81.CrossRefPubMed Ananthanarayanan M, Li Y, Surapureddi S, Balasubramaniyan N, Ahn J, Goldstein JA, et al. Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am J Physiol Gastrointest Liver Physiol. 2011;300:G771–81.CrossRefPubMed
34.
go back to reference Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer. 2008;8:632–45.CrossRefPubMed Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer. 2008;8:632–45.CrossRefPubMed
35.
go back to reference Tse C, Xiang RH, Bracht T, Naylor SL. Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res. 2002;62:542–6.PubMed Tse C, Xiang RH, Bracht T, Naylor SL. Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res. 2002;62:542–6.PubMed
36.
go back to reference Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–4.CrossRefPubMed Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–4.CrossRefPubMed
37.
go back to reference Wang G, Wang Y, Shen C, Huang YW, Huang K, Huang TH, et al. RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. PLoS One. 2010;5:e13798.CrossRefPubMedPubMedCentral Wang G, Wang Y, Shen C, Huang YW, Huang K, Huang TH, et al. RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. PLoS One. 2010;5:e13798.CrossRefPubMedPubMedCentral
38.
go back to reference Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11:241–7.CrossRefPubMedPubMedCentral Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11:241–7.CrossRefPubMedPubMedCentral
40.
go back to reference Wei S, Wang L, Zhang L, Li B, Li Z, Zhang Q, et al. ZNF143 enhances metastasis of gastric cancer by promoting the process of EMT through PI3K/AKT signaling pathway. Tumour Biol. 2016;37:12813–21.CrossRefPubMed Wei S, Wang L, Zhang L, Li B, Li Z, Zhang Q, et al. ZNF143 enhances metastasis of gastric cancer by promoting the process of EMT through PI3K/AKT signaling pathway. Tumour Biol. 2016;37:12813–21.CrossRefPubMed
Metadata
Title
MiR-6872 host gene SEMA3B and its antisense lncRNA SEMA3B-AS1 function synergistically to suppress gastric cardia adenocarcinoma progression
Authors
Wei Guo
Xiaoliang Liang
Lei Liu
Yanli Guo
Supeng Shen
Jia Liang
Zhiming Dong
Publication date
01-07-2019
Publisher
Springer Singapore
Published in
Gastric Cancer / Issue 4/2019
Print ISSN: 1436-3291
Electronic ISSN: 1436-3305
DOI
https://doi.org/10.1007/s10120-019-00924-0

Other articles of this Issue 4/2019

Gastric Cancer 4/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.