Skip to main content
Top
Published in: Lasers in Medical Science 2/2014

01-03-2014 | Review Article

A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer

Authors: Ali Shakeri-Zadeh, Seyed Kamran Kamrava, Mohammad Farhadi, Zahra Hajikarimi, Shayan Maleki, Amirhossein Ahmadi

Published in: Lasers in Medical Science | Issue 2/2014

Login to get access

Abstract

The application of gold nanoparticles (AuNPs) in nanophotothermolysis as a great photosensitizer is expanding, and this subject is a challenging area for cancer therapy. Recent technological advances in nanoscale manufacturing and synthesis promise the development of highly beneficial and innovative methods for the targeting of cancer. However, there is an obstacle to conducting effective laser-based nanosurgery because AuNPs are activated by visible or near infrared wavelengths, and the penetration of a laser beam inside the body is limited by some absorbents, such as melanin, water, and blood molecules. Considering everything stated above, we have suggested the application of a folate-conjugated AuNP as an effective agent for targeted nanophotothermolysis and the application of an optical fiber to transport the laser light from the source to the target tissue inside the body. Thus, a new method of nanosurgery in which a surgeon is able to perform surgery at the cellular or even at the subcellular level may be possible.
Literature
1.
go back to reference Colombelli J et al (2005) Subcellular nanosurgery with a pulsed subnanosecond UV-A laser. Med Laser Appl 20:217–222CrossRef Colombelli J et al (2005) Subcellular nanosurgery with a pulsed subnanosecond UV-A laser. Med Laser Appl 20:217–222CrossRef
2.
go back to reference Huang X et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228PubMedCrossRef Huang X et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228PubMedCrossRef
3.
go back to reference Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37:219–226PubMedCrossRef Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37:219–226PubMedCrossRef
4.
go back to reference Niemz M. (2004) Laser–tissue interactions: fundamentals and applications. Springer, Berlin Niemz M. (2004) Laser–tissue interactions: fundamentals and applications. Springer, Berlin
5.
go back to reference Sultan R (1990) Tumour ablation by laser in general surgery. Lasers Med Sci 5:185–193CrossRef Sultan R (1990) Tumour ablation by laser in general surgery. Lasers Med Sci 5:185–193CrossRef
6.
go back to reference Mansoori GA, Mohazzabi P, McCormack P (2007) Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. WRSTSD 4:226–257CrossRef Mansoori GA, Mohazzabi P, McCormack P (2007) Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. WRSTSD 4:226–257CrossRef
7.
go back to reference Mansoori GA. (2005) Principles of nanotechnology: molecular based study of condensed matter in small systems. World Sci Pub Co, Hackensack Mansoori GA. (2005) Principles of nanotechnology: molecular based study of condensed matter in small systems. World Sci Pub Co, Hackensack
8.
go back to reference Mansoori GA, George TF, Assoufid L, Zhang G. (2007) Molecular building blocks for nanotechnology: from diamondoids to nanoscale materials and applications. Springer, Berlin Mansoori GA, George TF, Assoufid L, Zhang G. (2007) Molecular building blocks for nanotechnology: from diamondoids to nanoscale materials and applications. Springer, Berlin
9.
go back to reference El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264PubMedCrossRef El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264PubMedCrossRef
10.
go back to reference Anderson LJE, Hansen E, Lukianova-Hleb EY, Hafner JH, Lapotko DO (2010) Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J Control Release 144:151–158PubMedCentralPubMedCrossRef Anderson LJE, Hansen E, Lukianova-Hleb EY, Hafner JH, Lapotko DO (2010) Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J Control Release 144:151–158PubMedCentralPubMedCrossRef
12.
13.
go back to reference Freitas Jr RA. (2005) Current status of nanomedicine and medical nanorobotics [invited survey]. J Comput Theor Nanosci; 2:1–25 Freitas Jr RA. (2005) Current status of nanomedicine and medical nanorobotics [invited survey]. J Comput Theor Nanosci; 2:1–25
14.
go back to reference Freitas Jr RA. (2005) What is nanomedicine? Nanomed Nanotechnol Biol Med; 1:2–9 Freitas Jr RA. (2005) What is nanomedicine? Nanomed Nanotechnol Biol Med; 1:2–9
15.
go back to reference Borges AR, Schengrund CL (2005) Dendrimers and antivirals: a review. Curr Drug Targets Infect Disord 5:247–254CrossRef Borges AR, Schengrund CL (2005) Dendrimers and antivirals: a review. Curr Drug Targets Infect Disord 5:247–254CrossRef
16.
go back to reference Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K et al (2005) Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett 15:1107–1109PubMedCrossRef Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K et al (2005) Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett 15:1107–1109PubMedCrossRef
17.
go back to reference O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176PubMedCrossRef O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176PubMedCrossRef
18.
go back to reference Freitas Jr Robert A (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3:243–246CrossRef Freitas Jr Robert A (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3:243–246CrossRef
19.
go back to reference Huttmann G, Yao C, Endl E (2005) New concepts in laser medicine: towards a laser surgery with cellular precision. Medical Laser Application 20:135–139CrossRef Huttmann G, Yao C, Endl E (2005) New concepts in laser medicine: towards a laser surgery with cellular precision. Medical Laser Application 20:135–139CrossRef
20.
go back to reference Benno Radt. (2002) Inaktivierungvon Proteinen und Zellen durch Laserbestrahlungvon Mikropartikeln. Ph.D. thesis, University Lu¨ beck, Benno Radt. (2002) Inaktivierungvon Proteinen und Zellen durch Laserbestrahlungvon Mikropartikeln. Ph.D. thesis, University Lu¨ beck,
21.
go back to reference Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032PubMedCentralPubMedCrossRef Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032PubMedCentralPubMedCrossRef
22.
go back to reference Lapotko DO, Zharov VP (2005) Spectral evaluation of laser-induced cell damage with photothermal microscopy. Lasers SurgMed 36:22–30CrossRef Lapotko DO, Zharov VP (2005) Spectral evaluation of laser-induced cell damage with photothermal microscopy. Lasers SurgMed 36:22–30CrossRef
23.
go back to reference Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31:365–374PubMedCrossRef Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31:365–374PubMedCrossRef
24.
go back to reference Shakeri-Zadeh A, Ghasemifard M, Ali Mansoori G (2010) Structural and optical characterization of folate-conjugated gold-nanoparticles. Physica E 42:1272–1280CrossRef Shakeri-Zadeh A, Ghasemifard M, Ali Mansoori G (2010) Structural and optical characterization of folate-conjugated gold-nanoparticles. Physica E 42:1272–1280CrossRef
25.
go back to reference Shakeri-Zadeh A, Eshghi H, Mansoori GA, AR H (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol. J Nanotech Prog Intl 1:13–29 Shakeri-Zadeh A, Eshghi H, Mansoori GA, AR H (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol. J Nanotech Prog Intl 1:13–29
26.
go back to reference Hashemian AR, Eshghi H, Shakeri-Zadeh A, Mansoori G (2010) Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Intl J Nanosci Nanotech 5:25–33 Hashemian AR, Eshghi H, Shakeri-Zadeh A, Mansoori G (2010) Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Intl J Nanosci Nanotech 5:25–33
27.
go back to reference Shakeri-Zadeh A, Mansoori G, Hashemian A, Eshghi H, Sazgarnia A, Montazerabadi A (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dynamic Biochem Proc Biotech Mol Biol 4:6–12 Shakeri-Zadeh A, Mansoori G, Hashemian A, Eshghi H, Sazgarnia A, Montazerabadi A (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dynamic Biochem Proc Biotech Mol Biol 4:6–12
28.
go back to reference Shakeri-Zadeh A, GA M. Cancer Nanotechnology treatment through folate conjugated gold nanoparticles. Proceedings of WCC 2010 (The 2nd World Congress on Cancer), India 2010 Shakeri-Zadeh A, GA M. Cancer Nanotechnology treatment through folate conjugated gold nanoparticles. Proceedings of WCC 2010 (The 2nd World Congress on Cancer), India 2010
29.
go back to reference Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2:1911–1928PubMedCentralPubMedCrossRef Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2:1911–1928PubMedCentralPubMedCrossRef
30.
go back to reference El-Sayed I, Huang X, El-Sayed M (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135PubMedCrossRef El-Sayed I, Huang X, El-Sayed M (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135PubMedCrossRef
32.
go back to reference Hirsch L, Stafford R, Bankson J et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554PubMedCentralPubMedCrossRef Hirsch L, Stafford R, Bankson J et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554PubMedCentralPubMedCrossRef
33.
go back to reference Berns MW, Greulich KO (2007) Laser Manipulation of Cells and Tissues: Methods in Cell Biology. Elsevier Academic Press, USA Berns MW, Greulich KO (2007) Laser Manipulation of Cells and Tissues: Methods in Cell Biology. Elsevier Academic Press, USA
34.
go back to reference Matsuura Y, Shi Y, Abe Y et al (2001) Infrared-laser delivery system based on polymer-coated hollow fibers. Optics Laser Technol 33:279–283CrossRef Matsuura Y, Shi Y, Abe Y et al (2001) Infrared-laser delivery system based on polymer-coated hollow fibers. Optics Laser Technol 33:279–283CrossRef
35.
go back to reference Mones E, Moretti F, Fasoli M et al (2006) Feasibility study for the use of Ca3+ − doped optical fibres in radiotherapy. Nucl Inst Meth Phys Res 562:449–455CrossRef Mones E, Moretti F, Fasoli M et al (2006) Feasibility study for the use of Ca3+ − doped optical fibres in radiotherapy. Nucl Inst Meth Phys Res 562:449–455CrossRef
36.
go back to reference Abakumov AO, Aleinikov VS, Artjushenko VG et al (1986) Coagulation and destruction of biological tissue by CO laser irradiation using fibre-optic cable. Optics Laser Technol 18:190–192CrossRef Abakumov AO, Aleinikov VS, Artjushenko VG et al (1986) Coagulation and destruction of biological tissue by CO laser irradiation using fibre-optic cable. Optics Laser Technol 18:190–192CrossRef
37.
go back to reference Takahara H, Koshijima T, Iida H (1986) Fundamental studies on laser radiation therapy: dispersion of a laser beam passing through optical fibres. Optics Laser Technol 18:85–88CrossRef Takahara H, Koshijima T, Iida H (1986) Fundamental studies on laser radiation therapy: dispersion of a laser beam passing through optical fibres. Optics Laser Technol 18:85–88CrossRef
39.
go back to reference Koufman JA, Rees CJ, Frazier WD et al (2007) Office-based laryngeal laser surgery: a review of 443 cases using three wavelengths. Otolaryngol Head Neck Surg 137:146–151PubMedCrossRef Koufman JA, Rees CJ, Frazier WD et al (2007) Office-based laryngeal laser surgery: a review of 443 cases using three wavelengths. Otolaryngol Head Neck Surg 137:146–151PubMedCrossRef
40.
go back to reference Krespi YP, Khosh MM, Blitzer A (1994) Transnasal endoscopic laser surgery for the treatment of benign nasopharyngeal lesions. Oper Tech Otolaryngol Head Neck Surg 5:267–270CrossRef Krespi YP, Khosh MM, Blitzer A (1994) Transnasal endoscopic laser surgery for the treatment of benign nasopharyngeal lesions. Oper Tech Otolaryngol Head Neck Surg 5:267–270CrossRef
41.
go back to reference Vereczkey A, Kabdebo O, Szeberényi Z et al (2005) Lasers in the surgical management of endometriosis. Rev Gynaecol Practice 5:23–31CrossRef Vereczkey A, Kabdebo O, Szeberényi Z et al (2005) Lasers in the surgical management of endometriosis. Rev Gynaecol Practice 5:23–31CrossRef
42.
go back to reference Mouadeb DA, Belafsky PC (2007) In-office laryngeal surgery with the 585 nm pulsed dye laser (PDL). Otolaryngol Head Neck Surg 137:477–481PubMedCrossRef Mouadeb DA, Belafsky PC (2007) In-office laryngeal surgery with the 585 nm pulsed dye laser (PDL). Otolaryngol Head Neck Surg 137:477–481PubMedCrossRef
43.
go back to reference Ilgner J, Westhofen M (2010) Laser interventions in otorhinolaryngology—current techniques and future developments. Med Laser App 25:27–33CrossRef Ilgner J, Westhofen M (2010) Laser interventions in otorhinolaryngology—current techniques and future developments. Med Laser App 25:27–33CrossRef
44.
go back to reference Shapiro J, Zeitels S, Fried M (1992) Laser surgery for laryngeal cancer. Otolaryngol Head Neck Surg 3:84–92 Shapiro J, Zeitels S, Fried M (1992) Laser surgery for laryngeal cancer. Otolaryngol Head Neck Surg 3:84–92
45.
go back to reference Li JL, Wang L, Liu XY et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274:319–326PubMedCrossRef Li JL, Wang L, Liu XY et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274:319–326PubMedCrossRef
46.
go back to reference Lu W, Xiong C, Zhang G et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog–conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886PubMedCentralPubMedCrossRef Lu W, Xiong C, Zhang G et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog–conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886PubMedCentralPubMedCrossRef
47.
go back to reference Li JL, Day D, Gu M (2008) Ultra low energy threshold for cancer photothermal therapy using transferrin conjugated gold nanorods. Adv Mater 20:3866–3871CrossRef Li JL, Day D, Gu M (2008) Ultra low energy threshold for cancer photothermal therapy using transferrin conjugated gold nanorods. Adv Mater 20:3866–3871CrossRef
48.
go back to reference Jain P, Lee K, El-Sayed I, El-Sayed M (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248PubMedCrossRef Jain P, Lee K, El-Sayed I, El-Sayed M (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248PubMedCrossRef
49.
go back to reference Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934PubMedCrossRef Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934PubMedCrossRef
50.
go back to reference Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179:748–753PubMedCrossRef Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179:748–753PubMedCrossRef
51.
go back to reference Neukam F, Stelzle F (2010) Laser tumor treatment in oral and maxillofacial surgery. Phys Proc 5:91–100CrossRef Neukam F, Stelzle F (2010) Laser tumor treatment in oral and maxillofacial surgery. Phys Proc 5:91–100CrossRef
52.
go back to reference Hui R, O'Sullivan M (2009) Fiber optic measurement techniques, 1st edn. Elsevier Academic Press, USA Hui R, O'Sullivan M (2009) Fiber optic measurement techniques, 1st edn. Elsevier Academic Press, USA
53.
go back to reference Adam C, Mues JM, Knudsen BE (2009) Evaluation of 24 holmium:YAG laser optical fibers for flexible ureteroscopy. J Urol 182:348–354CrossRef Adam C, Mues JM, Knudsen BE (2009) Evaluation of 24 holmium:YAG laser optical fibers for flexible ureteroscopy. J Urol 182:348–354CrossRef
54.
go back to reference Verdaasdonk RM, van Swol CF (1997) Laser light delivery systems for medical applications. Phys Med Biol 42:869–894PubMedCrossRef Verdaasdonk RM, van Swol CF (1997) Laser light delivery systems for medical applications. Phys Med Biol 42:869–894PubMedCrossRef
Metadata
Title
A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer
Authors
Ali Shakeri-Zadeh
Seyed Kamran Kamrava
Mohammad Farhadi
Zahra Hajikarimi
Shayan Maleki
Amirhossein Ahmadi
Publication date
01-03-2014
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 2/2014
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1399-x

Other articles of this Issue 2/2014

Lasers in Medical Science 2/2014 Go to the issue