Skip to main content
Top
Published in: Neurological Sciences 4/2016

01-04-2016 | Review Article

Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?

Authors: Rocco Salvatore Calabrò, Alberto Cacciola, Francesco Bertè, Alfredo Manuli, Antonino Leo, Alessia Bramanti, Antonino Naro, Demetrio Milardi, Placido Bramanti

Published in: Neurological Sciences | Issue 4/2016

Login to get access

Abstract

Gait abnormalities following neurological disorders are often disabling, negatively affecting patients’ quality of life. Therefore, regaining of walking is considered one of the primary objectives of the rehabilitation process. To overcome problems related to conventional physical therapy, in the last years there has been an intense technological development of robotic devices, and robotic rehabilitation has proved to play a major role in improving one’s ability to walk. The robotic rehabilitation systems can be classified into stationary and overground walking systems, and several studies have demonstrated their usefulness in patients after severe acquired brain injury, spinal cord injury and other neurological diseases, including Parkinson’s disease, multiple sclerosis and cerebral palsy. In this review, we want to highlight which are the most widely used devices today for gait neurological rehabilitation, focusing on their functioning, effectiveness and challenges. Novel and promising rehabilitation tools, including the use of virtual reality, are also discussed.
Literature
1.
go back to reference Xie Ming (2004) Fundamentals of robotics: linking perception to action. Singapore-MIT Alliance & Nanyang Technological University, Singapore Xie Ming (2004) Fundamentals of robotics: linking perception to action. Singapore-MIT Alliance & Nanyang Technological University, Singapore
2.
go back to reference Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J (2004) The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil 18(8):833–862CrossRefPubMed Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J (2004) The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil 18(8):833–862CrossRefPubMed
3.
go back to reference Cramer SC, Riley JD (2008) Neuroplasticity and brain repair after stroke. Curr Opin Neurol 21(1):76–82CrossRefPubMed Cramer SC, Riley JD (2008) Neuroplasticity and brain repair after stroke. Curr Opin Neurol 21(1):76–82CrossRefPubMed
4.
go back to reference French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, Langhorne P,Price CI, Walker A, Watkins CL (2007) Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 4:CD006073 French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, Langhorne P,Price CI, Walker A, Watkins CL (2007) Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 4:CD006073
5.
6.
go back to reference Kolominsky-Rabas PL, Heuschmann PU (2002) Incidence, etiology and long-term prognosis of stroke. Fortschr Neurol Psychiatr 70:657–662CrossRefPubMed Kolominsky-Rabas PL, Heuschmann PU (2002) Incidence, etiology and long-term prognosis of stroke. Fortschr Neurol Psychiatr 70:657–662CrossRefPubMed
8.
go back to reference Colombo G, Joer M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700PubMed Colombo G, Joer M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700PubMed
9.
go back to reference Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG (2003) Motor learning elicited by voluntary drive. Brain 126(Pt 4):866–872CrossRefPubMed Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG (2003) Motor learning elicited by voluntary drive. Brain 126(Pt 4):866–872CrossRefPubMed
10.
go back to reference Nudo RJ (2003) Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 14(1 Suppl):S57–S76CrossRefPubMed Nudo RJ (2003) Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 14(1 Suppl):S57–S76CrossRefPubMed
11.
go back to reference Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G (2014) The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 11(2):187–198CrossRefPubMed Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G (2014) The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 11(2):187–198CrossRefPubMed
12.
go back to reference Hesse S, Bertelt C, Schaffrin A, Malezic A, Mauritz KH (1994) Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body-weight support. Arch Phys Med Rehabil 75(10):1087–1093CrossRefPubMed Hesse S, Bertelt C, Schaffrin A, Malezic A, Mauritz KH (1994) Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body-weight support. Arch Phys Med Rehabil 75(10):1087–1093CrossRefPubMed
13.
go back to reference Nilsson L, Carlsson J, Danielsson A, Fugl-Meyer A, Hellström K, Kristensen L, Sjölund B, Sunnerhagen KS, Grimby G (2001) Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 15(5):515–527CrossRefPubMed Nilsson L, Carlsson J, Danielsson A, Fugl-Meyer A, Hellström K, Kristensen L, Sjölund B, Sunnerhagen KS, Grimby G (2001) Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 15(5):515–527CrossRefPubMed
14.
go back to reference Iosa M, Morone G, Fusco A, Bragoni M, Coiro P, Multari M, Venturiero V, De Angelis D, Pratesi L, Paolucci S (2012) Seven capital devices for the future of stroke rehabilitation. Stroke Res Treat 2012:187965PubMedPubMedCentral Iosa M, Morone G, Fusco A, Bragoni M, Coiro P, Multari M, Venturiero V, De Angelis D, Pratesi L, Paolucci S (2012) Seven capital devices for the future of stroke rehabilitation. Stroke Res Treat 2012:187965PubMedPubMedCentral
15.
go back to reference Mehrholz J, Pohl M (2012) Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoscelton devices. J Rehabil Med 44:193–199CrossRefPubMed Mehrholz J, Pohl M (2012) Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoscelton devices. J Rehabil Med 44:193–199CrossRefPubMed
16.
go back to reference Da Cunha-Filho TI, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ (2002) Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil 83:1258–1265CrossRef Da Cunha-Filho TI, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ (2002) Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil 83:1258–1265CrossRef
17.
go back to reference Mulroy SJ, Klassen T, Gronley JK, Eberly VJ, Brown DA, Sullivan KJ (2010) Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study. Phys Ther 90(2):209–223CrossRefPubMed Mulroy SJ, Klassen T, Gronley JK, Eberly VJ, Brown DA, Sullivan KJ (2010) Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study. Phys Ther 90(2):209–223CrossRefPubMed
18.
go back to reference Calabrò RS, De Cola MC, Leo A, Reitano S, Balletta T, Trombetta G, Naro A, Russo M, Bertè F, De Luca R, Bramanti P (2015) Robotic neurorehabilitation in patients with chronic stroke: psychological well-being beyond motor improvement. Int J Rehabil Res 38(3):219–225CrossRefPubMed Calabrò RS, De Cola MC, Leo A, Reitano S, Balletta T, Trombetta G, Naro A, Russo M, Bertè F, De Luca R, Bramanti P (2015) Robotic neurorehabilitation in patients with chronic stroke: psychological well-being beyond motor improvement. Int J Rehabil Res 38(3):219–225CrossRefPubMed
19.
go back to reference Hidler J, Wisman W, Neckel N (2008) Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomechanics 23(10):1251–1259CrossRef Hidler J, Wisman W, Neckel N (2008) Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomechanics 23(10):1251–1259CrossRef
20.
go back to reference Jezernik S, Colombo G, Keller T, Frueh H, Morari M (2003) Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation 6(2):108–115CrossRefPubMed Jezernik S, Colombo G, Keller T, Frueh H, Morari M (2003) Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation 6(2):108–115CrossRefPubMed
21.
go back to reference Veneman J, Menger J, van Asseldonk E, van der Helm F, van der Kooij H (2008) Fixating the pelvis in the horizontal plane affects gait characteristics. Gait Posture 28:157–163CrossRefPubMed Veneman J, Menger J, van Asseldonk E, van der Helm F, van der Kooij H (2008) Fixating the pelvis in the horizontal plane affects gait characteristics. Gait Posture 28:157–163CrossRefPubMed
22.
go back to reference Hidler JM, Wall AE (2005) Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 20(2):184–193CrossRef Hidler JM, Wall AE (2005) Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 20(2):184–193CrossRef
23.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H (2007) Design and evaluation of the Lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386CrossRefPubMed Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H (2007) Design and evaluation of the Lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386CrossRefPubMed
24.
go back to reference Hesse S, Uhlenbrock D (2000) A mechanized gait trainer for restoration of gait. J Rehabil Res Dev 37(6):701–708PubMed Hesse S, Uhlenbrock D (2000) A mechanized gait trainer for restoration of gait. J Rehabil Res Dev 37(6):701–708PubMed
25.
go back to reference Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D (2008) Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 22:625–632CrossRefPubMed Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D (2008) Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 22:625–632CrossRefPubMed
26.
go back to reference Wall A, Borg J, Palmcrantz S (2015) Clinical application of the hybrid assistive limb (HAL) for gait training—a systematic review. Front Syst Neurosci. 25(9):48 Wall A, Borg J, Palmcrantz S (2015) Clinical application of the hybrid assistive limb (HAL) for gait training—a systematic review. Front Syst Neurosci. 25(9):48
27.
go back to reference Hussain S, Xie SQ, Jamwal PK, Parsons J (2012) An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys 34:1448–1453CrossRefPubMed Hussain S, Xie SQ, Jamwal PK, Parsons J (2012) An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys 34:1448–1453CrossRefPubMed
28.
go back to reference Stegall P, Winfree K, Zanotto D, Agrawal SK (2013) Rehabilitation exoskeleton design: exploring the effect of the anterior lunge degree of freedom. IEEE T Robot 29(4):838–846CrossRef Stegall P, Winfree K, Zanotto D, Agrawal SK (2013) Rehabilitation exoskeleton design: exploring the effect of the anterior lunge degree of freedom. IEEE T Robot 29(4):838–846CrossRef
29.
go back to reference Duschau-Wicke A, Caprez A, Riener R (2010) Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil 7(1) Duschau-Wicke A, Caprez A, Riener R (2010) Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil 7(1)
30.
go back to reference Morone G, Iosa M, Bragoni M, De Angelis D, Venturiero V, Coiro P, Riso R, Pratesi L, Paolucci S (2012) Who may have durable benefit from robotic gait training?: a 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke 43(4):1140–1142CrossRefPubMed Morone G, Iosa M, Bragoni M, De Angelis D, Venturiero V, Coiro P, Riso R, Pratesi L, Paolucci S (2012) Who may have durable benefit from robotic gait training?: a 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke 43(4):1140–1142CrossRefPubMed
31.
go back to reference van Nunen MP, Gerrits KH, Konijnenbelt M, Janssen TW, de Haan A (2015) Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol 10(2):141–148CrossRefPubMed van Nunen MP, Gerrits KH, Konijnenbelt M, Janssen TW, de Haan A (2015) Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol 10(2):141–148CrossRefPubMed
32.
go back to reference Hidler JM, Carroll M, Federovich EH (2007) Strength and coordination in the paretic leg of individuals following acute stroke. IEEE Trans Neural Syst Rehabil Eng 15(4):526–534CrossRefPubMed Hidler JM, Carroll M, Federovich EH (2007) Strength and coordination in the paretic leg of individuals following acute stroke. IEEE Trans Neural Syst Rehabil Eng 15(4):526–534CrossRefPubMed
33.
go back to reference Husemann B, Müller F, Krewer C, Heller S, Koenig E (2007) Effects of locomotion training with assistance of a driven gait orthosis in hemiparetic patients after stroke. Stroke 38(2):349–354CrossRefPubMed Husemann B, Müller F, Krewer C, Heller S, Koenig E (2007) Effects of locomotion training with assistance of a driven gait orthosis in hemiparetic patients after stroke. Stroke 38(2):349–354CrossRefPubMed
34.
go back to reference Swinnen E, Beckwée D, Meeusen R, Baeyens JP, Kerckhofs E (2014) Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Top Stroke Rehabil 21(2):87–100CrossRefPubMed Swinnen E, Beckwée D, Meeusen R, Baeyens JP, Kerckhofs E (2014) Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Top Stroke Rehabil 21(2):87–100CrossRefPubMed
35.
go back to reference Mehrholz J, Pohl M, Elsner B (2014) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 1:CD002840PubMed Mehrholz J, Pohl M, Elsner B (2014) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 1:CD002840PubMed
36.
go back to reference Uçar DE, Paker N, Buğdaycı D (2014) Lokomat: a therapeutic chance for patients with chronic hemiplegia. NeuroRehabilitation 34:447–453PubMed Uçar DE, Paker N, Buğdaycı D (2014) Lokomat: a therapeutic chance for patients with chronic hemiplegia. NeuroRehabilitation 34:447–453PubMed
37.
go back to reference Calabrò RS, Reitano S, Leo A, De Luca R, Melegari C, Bramanti P (2014) Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study. Funct Neurol 29(2):139–141PubMedPubMedCentral Calabrò RS, Reitano S, Leo A, De Luca R, Melegari C, Bramanti P (2014) Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study. Funct Neurol 29(2):139–141PubMedPubMedCentral
38.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG (2009) Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 23(1):5–13CrossRefPubMed Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG (2009) Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 23(1):5–13CrossRefPubMed
39.
go back to reference Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR (2008) Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 39(6):1786–1792CrossRefPubMed Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR (2008) Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 39(6):1786–1792CrossRefPubMed
40.
go back to reference Kelley CP, Childress J, Boake C, Noser EA (2013) Over-ground and robotic-assisted locomotor training in adults with chronic stroke: a blinded randomized clinical trial. Disabil Rehabil Assist Technol 8(2):161–168CrossRefPubMed Kelley CP, Childress J, Boake C, Noser EA (2013) Over-ground and robotic-assisted locomotor training in adults with chronic stroke: a blinded randomized clinical trial. Disabil Rehabil Assist Technol 8(2):161–168CrossRefPubMed
41.
go back to reference Moreh E, Meiner Z, Neeb M, Hiller N, Schwartz I (2009) Spinal decompression sickness presenting as partial Brown-Sequard syndrome and treated with robotic-assisted body-weight support treadmill training. J Rehabil Med 41(1):88–89CrossRefPubMed Moreh E, Meiner Z, Neeb M, Hiller N, Schwartz I (2009) Spinal decompression sickness presenting as partial Brown-Sequard syndrome and treated with robotic-assisted body-weight support treadmill training. J Rehabil Med 41(1):88–89CrossRefPubMed
42.
go back to reference Ustinova K, Chernikova L, Bilimenko A, Telenkov A, Epstein N (2011) Effect of robotic locomotor training in an individual with Parkinson’s disease: a case report. Disabil Rehabil Assist Technol 6(1):77–85CrossRefPubMed Ustinova K, Chernikova L, Bilimenko A, Telenkov A, Epstein N (2011) Effect of robotic locomotor training in an individual with Parkinson’s disease: a case report. Disabil Rehabil Assist Technol 6(1):77–85CrossRefPubMed
43.
go back to reference Calabrò RS, De Luca R, Leo A, Balletta T, Marra A, Bramanti P (2015) Lokomat training in vascular dementia: motor improvement and beyond! Aging Clin Exp Res. doi:10.1007/40520-015-0343-2 Calabrò RS, De Luca R, Leo A, Balletta T, Marra A, Bramanti P (2015) Lokomat training in vascular dementia: motor improvement and beyond! Aging Clin Exp Res. doi:10.​1007/​40520-015-0343-2
44.
go back to reference Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, Berweck S, Heinen F, Meyer-Heim A (2010) Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol 14(6):496–502CrossRefPubMed Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, Berweck S, Heinen F, Meyer-Heim A (2010) Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol 14(6):496–502CrossRefPubMed
45.
go back to reference Lo AC, Chang VC, Gianfrancesco MA, Friedman JH, Patterson TS, Benedicto DF (2010) Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil 7:51CrossRefPubMedPubMedCentral Lo AC, Chang VC, Gianfrancesco MA, Friedman JH, Patterson TS, Benedicto DF (2010) Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil 7:51CrossRefPubMedPubMedCentral
46.
go back to reference Carda S, Invernizzi M, Baricich A, Comi C, Croquelois A, Cisari C (2012) Robotic gait training is not superior to conventional treadmill training in parkinson disease: a single-blind randomized controlled trial. Neurorehabil Neural Repair 26(9):1027–1034CrossRefPubMed Carda S, Invernizzi M, Baricich A, Comi C, Croquelois A, Cisari C (2012) Robotic gait training is not superior to conventional treadmill training in parkinson disease: a single-blind randomized controlled trial. Neurorehabil Neural Repair 26(9):1027–1034CrossRefPubMed
47.
go back to reference Nardo A, Anasetti F, Servello D, Porta M (2014) Quantitative gait analysis in patients with Parkinson treated with deep brain stimulation: the effects of a robotic gait training. Neuro Rehabil 35(4):779–788 Nardo A, Anasetti F, Servello D, Porta M (2014) Quantitative gait analysis in patients with Parkinson treated with deep brain stimulation: the effects of a robotic gait training. Neuro Rehabil 35(4):779–788
48.
go back to reference Schwartz I, Sajin A, Moreh E, Fisher I, Neeb M, Forest A, Vaknin-Dembinsky A, Karusis D, Meiner Z (2012) Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult Scler 18(6):881–890CrossRefPubMed Schwartz I, Sajin A, Moreh E, Fisher I, Neeb M, Forest A, Vaknin-Dembinsky A, Karusis D, Meiner Z (2012) Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult Scler 18(6):881–890CrossRefPubMed
49.
go back to reference Straudi S, Benedetti MG, Venturini E, Manca M, Foti C, Basaglia N (2013) Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. Neuro Rehabil 33:555–563 Straudi S, Benedetti MG, Venturini E, Manca M, Foti C, Basaglia N (2013) Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. Neuro Rehabil 33:555–563
50.
go back to reference Gandolfi M, Geroin C, Picelli A, Munari D, Waldner A, Tamburin S, Marchioretto F, Smania N (2008) Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci 8:318 Gandolfi M, Geroin C, Picelli A, Munari D, Waldner A, Tamburin S, Marchioretto F, Smania N (2008) Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci 8:318
51.
go back to reference Lo AC, Triche EW (2008) Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 22:661–671CrossRefPubMed Lo AC, Triche EW (2008) Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 22:661–671CrossRefPubMed
52.
go back to reference Vaney C, Gattlen B, Lugon-Moulin V, Meichtry A, Hausammann R, Foinant D, Anchisi-Bellwald AM, Palaci C, Hilfiker R (2012) Robotic-assisted step training (lokomat) not superior to equal intensity of overground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair 26:212–221CrossRefPubMed Vaney C, Gattlen B, Lugon-Moulin V, Meichtry A, Hausammann R, Foinant D, Anchisi-Bellwald AM, Palaci C, Hilfiker R (2012) Robotic-assisted step training (lokomat) not superior to equal intensity of overground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair 26:212–221CrossRefPubMed
53.
go back to reference Domingo A, Lam T (2014) Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil 11:167CrossRefPubMedPubMedCentral Domingo A, Lam T (2014) Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil 11:167CrossRefPubMedPubMedCentral
54.
go back to reference Van Kammen K, Boonstra A, Reinders-Messelink H, den Otter R (2014) The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking. PLoS ONE 9(9):e107323CrossRefPubMedPubMedCentral Van Kammen K, Boonstra A, Reinders-Messelink H, den Otter R (2014) The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking. PLoS ONE 9(9):e107323CrossRefPubMedPubMedCentral
55.
go back to reference Krewer C, Müller F, Husemann B, Heller S, Quintern J, Koenig E (2007) The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects. Gait Posture 26(3):372–377CrossRefPubMed Krewer C, Müller F, Husemann B, Heller S, Quintern J, Koenig E (2007) The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects. Gait Posture 26(3):372–377CrossRefPubMed
56.
go back to reference Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG (2009) Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther 89(8):829–839CrossRefPubMedPubMedCentral Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG (2009) Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther 89(8):829–839CrossRefPubMedPubMedCentral
57.
go back to reference Mat Dzahir MA, Yamamoto SI (2014) Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers. Robotics 3:120–148CrossRef Mat Dzahir MA, Yamamoto SI (2014) Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers. Robotics 3:120–148CrossRef
58.
go back to reference Fisher S (2008) Use of autoambulator for mobility improvement in patients with central nervous system (CNS) injury or disease. Neurorehabil Neural Repair 22:556 Fisher S (2008) Use of autoambulator for mobility improvement in patients with central nervous system (CNS) injury or disease. Neurorehabil Neural Repair 22:556
59.
go back to reference Fisher S, Lucas L, Thrasher TA (2011) Robot-assisted gait training for patients with hemiparesis due to stroke. Top Stroke Rehabil 18(3):269–276CrossRefPubMed Fisher S, Lucas L, Thrasher TA (2011) Robot-assisted gait training for patients with hemiparesis due to stroke. Top Stroke Rehabil 18(3):269–276CrossRefPubMed
60.
go back to reference Mantone J (2006) Getting a leg up? Rehab patients get an assist from devices such as HealthSouth’s AutoAmbulator, but the robots’ clinical benefits are still in doubt. Mod Healthc 36(7):58–60PubMed Mantone J (2006) Getting a leg up? Rehab patients get an assist from devices such as HealthSouth’s AutoAmbulator, but the robots’ clinical benefits are still in doubt. Mod Healthc 36(7):58–60PubMed
63.
go back to reference Tufekciler N, van Asseldonk EH, van der Kooij H (2011) Velocity-dependent reference trajectory generation for the LOPES gait training robot. IEEE Int Conf Rehabil Robot 2011:5975414PubMed Tufekciler N, van Asseldonk EH, van der Kooij H (2011) Velocity-dependent reference trajectory generation for the LOPES gait training robot. IEEE Int Conf Rehabil Robot 2011:5975414PubMed
64.
go back to reference Koopman B, van Asseldonk EH, van der Kooij H (2013) Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil 10:3CrossRefPubMedPubMedCentral Koopman B, van Asseldonk EH, van der Kooij H (2013) Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil 10:3CrossRefPubMedPubMedCentral
65.
go back to reference Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS (2014) The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil 11:26CrossRefPubMedPubMedCentral Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS (2014) The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil 11:26CrossRefPubMedPubMedCentral
66.
go back to reference Khanna I, Roy A, Rodgers MM, Krebs HI, Macko RM, Forrester LW (2010) Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil 7:23CrossRefPubMedPubMedCentral Khanna I, Roy A, Rodgers MM, Krebs HI, Macko RM, Forrester LW (2010) Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil 7:23CrossRefPubMedPubMedCentral
67.
go back to reference Agrawal SK, Banala SK, Fattah A, Sangwan V, Krishnamoorthy V, Scholz JP, Hsu WL (2007) Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng 15(3):410–20 Agrawal SK, Banala SK, Fattah A, Sangwan V, Krishnamoorthy V, Scholz JP, Hsu WL (2007) Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng 15(3):410–20
68.
go back to reference Banala SK, Agrawal SK, Kim SH, Scholz JP (2010) Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron 15(2):216–225CrossRef Banala SK, Agrawal SK, Kim SH, Scholz JP (2010) Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron 15(2):216–225CrossRef
69.
go back to reference Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRefPubMed Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRefPubMed
70.
go back to reference Hussain S (2014) State-of-the-art robotic gait rehabilitation orthoses: design and control aspects. Neuro Rehabil 35:701–709 Hussain S (2014) State-of-the-art robotic gait rehabilitation orthoses: design and control aspects. Neuro Rehabil 35:701–709
71.
go back to reference Hesse S, Sarkodie-Gyan T, Uhlenbrock D (1999) Development of an advanced mechanized gait trainer, controlling the movement of the center of mass, for restoring gait in non-ambulant subjects. Biomed Tech 44:194–201CrossRef Hesse S, Sarkodie-Gyan T, Uhlenbrock D (1999) Development of an advanced mechanized gait trainer, controlling the movement of the center of mass, for restoring gait in non-ambulant subjects. Biomed Tech 44:194–201CrossRef
72.
go back to reference Dias D, Laíns J, Pereira A, Nunes R, Caldas J, Amaral C, Pires S, Costa A, Alves P, Moreira M, Garrido N, Loureiro L (2007) Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys 43(4):499–504PubMed Dias D, Laíns J, Pereira A, Nunes R, Caldas J, Amaral C, Pires S, Costa A, Alves P, Moreira M, Garrido N, Loureiro L (2007) Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys 43(4):499–504PubMed
73.
go back to reference Peurala SH, Tarkka IM, Pitkänen K, Sivenius J (2005) The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil 86(8):1557–1564CrossRefPubMed Peurala SH, Tarkka IM, Pitkänen K, Sivenius J (2005) The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil 86(8):1557–1564CrossRefPubMed
74.
go back to reference Hesse S, Werner C, Uhlenbrock D, von Frankenberg S, Bardeleben A, Brandl-Hesse B (2001) An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results. Neurorehabil Neural Repair 15(1):39–50CrossRefPubMed Hesse S, Werner C, Uhlenbrock D, von Frankenberg S, Bardeleben A, Brandl-Hesse B (2001) An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results. Neurorehabil Neural Repair 15(1):39–50CrossRefPubMed
75.
go back to reference Hesse S, Werner C, Bardeleben A (2004) Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury. Spinal Cord 42(6):346–352CrossRefPubMed Hesse S, Werner C, Bardeleben A (2004) Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury. Spinal Cord 42(6):346–352CrossRefPubMed
76.
go back to reference Manella KJ, Torres J, Field-Fote EC (2010) Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury. J Rehabil Med 42(8):795–798CrossRefPubMed Manella KJ, Torres J, Field-Fote EC (2010) Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury. J Rehabil Med 42(8):795–798CrossRefPubMed
77.
go back to reference Iosa M, Morone G, Bragoni M, De Angelis D, Venturiero V, Coiro P, Pratesi L, Paolucc S (2011) Driving electromechanically assisted Gait Trainer for people with stroke. J Rehabil Res Dev 48(2):135–146CrossRefPubMed Iosa M, Morone G, Bragoni M, De Angelis D, Venturiero V, Coiro P, Pratesi L, Paolucc S (2011) Driving electromechanically assisted Gait Trainer for people with stroke. J Rehabil Res Dev 48(2):135–146CrossRefPubMed
79.
go back to reference Picelli A, Melotti C, Origano F, Neri R, Waldner A, Smania N (2013) Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disor 19(6):605–610CrossRef Picelli A, Melotti C, Origano F, Neri R, Waldner A, Smania N (2013) Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disor 19(6):605–610CrossRef
80.
go back to reference Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, Smania N (2012) Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair 26(4):353–361CrossRefPubMed Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, Smania N (2012) Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair 26(4):353–361CrossRefPubMed
81.
go back to reference Picelli A, Melotti C, Origano F, Waldner A, Gimigliano R, Smania N (2012) Does robotic gait training improve balance in Parkinson’s disease? A randomized controlled trial. Parkinsonism Relat Disord 18(8):990–993CrossRefPubMed Picelli A, Melotti C, Origano F, Waldner A, Gimigliano R, Smania N (2012) Does robotic gait training improve balance in Parkinson’s disease? A randomized controlled trial. Parkinsonism Relat Disord 18(8):990–993CrossRefPubMed
82.
go back to reference Hesse S, Waldner A, Tomelleri C (2010) Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 7:30CrossRefPubMedPubMedCentral Hesse S, Waldner A, Tomelleri C (2010) Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 7:30CrossRefPubMedPubMedCentral
83.
go back to reference Stoller O, Schindelholz M, Bichsel L, Hunt KJ (2014) Cardiopulmonary responses to robotic end-effector-based walking and stair climbing. Med Eng Phys 36(4):425–431CrossRefPubMed Stoller O, Schindelholz M, Bichsel L, Hunt KJ (2014) Cardiopulmonary responses to robotic end-effector-based walking and stair climbing. Med Eng Phys 36(4):425–431CrossRefPubMed
84.
go back to reference Sale P, Franceschini M, Waldner A, Hesse S (2012) Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med 48(1):111–121PubMed Sale P, Franceschini M, Waldner A, Hesse S (2012) Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med 48(1):111–121PubMed
85.
go back to reference Fineberg DB, Asselin P, Harel NY, Agranova-Breyter I, Kornfeld SD, Bauman WA, Spungen AM (2013) Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J Spinal Cord Med 36(4):313–321CrossRefPubMedPubMedCentral Fineberg DB, Asselin P, Harel NY, Agranova-Breyter I, Kornfeld SD, Bauman WA, Spungen AM (2013) Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J Spinal Cord Med 36(4):313–321CrossRefPubMedPubMedCentral
86.
go back to reference Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921CrossRefPubMed Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921CrossRefPubMed
87.
go back to reference Nooijen CF, Ter Hoeve N, Field-Fote EC (2009) Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabi 6(6):36CrossRef Nooijen CF, Ter Hoeve N, Field-Fote EC (2009) Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabi 6(6):36CrossRef
89.
go back to reference Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M (2015) HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil 12:68CrossRefPubMedPubMedCentral Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M (2015) HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil 12:68CrossRefPubMedPubMedCentral
90.
go back to reference Weiss PL, Tirosh E, Fehlings D (2014) Role of virtual reality for cerebral palsy management. J Child Neurol 29(8):1119–1124CrossRefPubMed Weiss PL, Tirosh E, Fehlings D (2014) Role of virtual reality for cerebral palsy management. J Child Neurol 29(8):1119–1124CrossRefPubMed
91.
go back to reference Imam B, Jarus T (2014) Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehab Res Pract 2014:594 Imam B, Jarus T (2014) Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehab Res Pract 2014:594
92.
go back to reference Gamito P, Oliveira J, Coelho C, Morais D, Lopes P, Pacheco J, Brito R, Soares F, Santos N, Barata AF (2015) Cognitive training on stroke patients via virtual reality-based serious games. Disabil Rehabil 5:1–4CrossRef Gamito P, Oliveira J, Coelho C, Morais D, Lopes P, Pacheco J, Brito R, Soares F, Santos N, Barata AF (2015) Cognitive training on stroke patients via virtual reality-based serious games. Disabil Rehabil 5:1–4CrossRef
93.
go back to reference Laver KE, George S, Thomas S, Deutsch JE, Crotty M (2015) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 12:2 Laver KE, George S, Thomas S, Deutsch JE, Crotty M (2015) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 12:2
94.
go back to reference Mirelman A, Patritti BL, Bonato P, Deutsch JE (2010) Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture. 31(4):433–437CrossRefPubMed Mirelman A, Patritti BL, Bonato P, Deutsch JE (2010) Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture. 31(4):433–437CrossRefPubMed
95.
go back to reference Putrino D (2014) Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Curr Opin Neurol 27(6):631–636CrossRefPubMed Putrino D (2014) Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Curr Opin Neurol 27(6):631–636CrossRefPubMed
96.
go back to reference Isaacson BM, Swanson TM, Pasquina PF (2013) The use of a computer-assisted rehabilitation environment (CAREN) for enhancing wounded warrior rehabilitation regimens. J Spinal Cord Med 36:296–299CrossRefPubMedPubMedCentral Isaacson BM, Swanson TM, Pasquina PF (2013) The use of a computer-assisted rehabilitation environment (CAREN) for enhancing wounded warrior rehabilitation regimens. J Spinal Cord Med 36:296–299CrossRefPubMedPubMedCentral
97.
go back to reference Hak L, Houdijk H, van der Wurff P, Prins MR, Beek PJ, van Dieën JH (2015) Stride frequency and length adjustment in post-stroke individuals: influence on the margins of stability. J Rehabil Med 47:126–132CrossRefPubMed Hak L, Houdijk H, van der Wurff P, Prins MR, Beek PJ, van Dieën JH (2015) Stride frequency and length adjustment in post-stroke individuals: influence on the margins of stability. J Rehabil Med 47:126–132CrossRefPubMed
98.
go back to reference Sessoms PH, Gottshall KR, Collins JD, Markham AE, Service KA, Reini SA (2015) Improvements in gait speed and weight shift of persons with traumatic brain injury and vestibular dysfunction using a virtual reality computer-assisted rehabilitation environment. Mil Med 180:143–149CrossRefPubMed Sessoms PH, Gottshall KR, Collins JD, Markham AE, Service KA, Reini SA (2015) Improvements in gait speed and weight shift of persons with traumatic brain injury and vestibular dysfunction using a virtual reality computer-assisted rehabilitation environment. Mil Med 180:143–149CrossRefPubMed
99.
go back to reference Villamar MF, Santos Portilla A, Fregni F, Zafonte R (2012) Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation 15(4):326–338CrossRefPubMed Villamar MF, Santos Portilla A, Fregni F, Zafonte R (2012) Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation 15(4):326–338CrossRefPubMed
100.
go back to reference Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, Smania N (2015) Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. Restor Neurol Neurosci 33(3):357–368CrossRefPubMed Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, Smania N (2015) Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. Restor Neurol Neurosci 33(3):357–368CrossRefPubMed
101.
go back to reference Danzl MM, Chelette KC, Lee K, Lykins D, Sawaki L (2013) Brain stimulation paired with novel locomotor training with robotic gait orthosis in chronic stroke: a feasibility study. NeuroRehabilitation 33(1):67–76PubMedPubMedCentral Danzl MM, Chelette KC, Lee K, Lykins D, Sawaki L (2013) Brain stimulation paired with novel locomotor training with robotic gait orthosis in chronic stroke: a feasibility study. NeuroRehabilitation 33(1):67–76PubMedPubMedCentral
Metadata
Title
Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?
Authors
Rocco Salvatore Calabrò
Alberto Cacciola
Francesco Bertè
Alfredo Manuli
Antonino Leo
Alessia Bramanti
Antonino Naro
Demetrio Milardi
Placido Bramanti
Publication date
01-04-2016
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 4/2016
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-016-2474-4

Other articles of this Issue 4/2016

Neurological Sciences 4/2016 Go to the issue