Skip to main content
Top
Published in: Journal of Artificial Organs 4/2012

01-12-2012 | Original Article

Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve

Authors: Chi-Pei Li, Po-Chien Lu

Published in: Journal of Artificial Organs | Issue 4/2012

Login to get access

Abstract

The closing velocity of the leaflets of mechanical heart valves is excessively rapid and can cause the cavitation phenomenon. Cavitation bubbles collapse and produce high pressure which then damages red blood cells and platelets. The closure mechanism of the trileaflet valve uses the vortices in the aortic sinus to help close the leaflets, which differs from that of the monoleaflet or bileaflet mechanical heart valves which mainly depends on the reverse flow. We used the commercial software program Fluent to run numerical simulations of the St. Jude Medical bileaflet valve and a new trileaflet mechanical heart valve. The results of these numerical simulations were validated with flow field experiments. The closing velocity of the trileaflet valve was clearly slower than that of the St. Jude Medical bileaflet valve, which would effectively reduce the occurrence of cavitation. The findings of this study are expected to advance the development of the trileaflet valve.
Literature
1.
go back to reference Levine MN, Raskob G, Hirsh J. Hemorrhagic complications of long-term anticoagulation therapy. Chest. 1989;95:265–365. Levine MN, Raskob G, Hirsh J. Hemorrhagic complications of long-term anticoagulation therapy. Chest. 1989;95:265–365.
2.
go back to reference Edmunds LHJ. Thrombotic and bleeding complications of prosthetic heart valves. Ann Thorac Surg. 1987;44:430–45.PubMedCrossRef Edmunds LHJ. Thrombotic and bleeding complications of prosthetic heart valves. Ann Thorac Surg. 1987;44:430–45.PubMedCrossRef
3.
go back to reference Carey RF, Porter JM, Richard G, Luck C, Shu MCS, Guo X. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves. J Heart Valve Dis. 1995;4:532–41.PubMed Carey RF, Porter JM, Richard G, Luck C, Shu MCS, Guo X. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves. J Heart Valve Dis. 1995;4:532–41.PubMed
4.
go back to reference Hwang NHC. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J Heart Valve Dis. 1998;7:140–50.PubMed Hwang NHC. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J Heart Valve Dis. 1998;7:140–50.PubMed
5.
go back to reference Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R. Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis. 1994;3:S2–7.PubMed Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R. Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis. 1994;3:S2–7.PubMed
6.
go back to reference He Z, Xi B, Zhu K, Hwang NHC. Mechanicals of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis. 2001;10:666–74.PubMed He Z, Xi B, Zhu K, Hwang NHC. Mechanicals of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis. 2001;10:666–74.PubMed
7.
go back to reference Yoganathan AP, Corcoran WH, Harrison EC, Carl JR. The Bjork-Shiley aortic valve-prosthesis: flow characteristics, thrombus formation and tissue overgrowth. Circulation. 1978;58:70–6.PubMedCrossRef Yoganathan AP, Corcoran WH, Harrison EC, Carl JR. The Bjork-Shiley aortic valve-prosthesis: flow characteristics, thrombus formation and tissue overgrowth. Circulation. 1978;58:70–6.PubMedCrossRef
8.
go back to reference Liu JS, Lu PC, Chu SH. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng. 2000;122:118–24.PubMedCrossRef Liu JS, Lu PC, Chu SH. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng. 2000;122:118–24.PubMedCrossRef
9.
go back to reference Woo YR, Yoganathan AJ. In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical aortic heart valve prostheses. Life Support Syst. 1985;3:283–312.PubMed Woo YR, Yoganathan AJ. In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical aortic heart valve prostheses. Life Support Syst. 1985;3:283–312.PubMed
10.
go back to reference Li CP, Lu PC, Liu JS, Lo CW, Hwang NHC. Role of vortices in cavitation formation in the flow across a mechanical heart valve. J Heart Valve Dis. 2008;17:435–45.PubMed Li CP, Lu PC, Liu JS, Lo CW, Hwang NHC. Role of vortices in cavitation formation in the flow across a mechanical heart valve. J Heart Valve Dis. 2008;17:435–45.PubMed
11.
go back to reference Gross JM, Guo GX, Hwang NHC. Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO J. 1991;37:M357–8. Gross JM, Guo GX, Hwang NHC. Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO J. 1991;37:M357–8.
12.
go back to reference Lu PC, Liu JS, Huang RH, Lo CW, Lai HC, Hwang NHC. The closing behavior of mechanical aortic heart valve prostheses. ASAIO J. 2004;50:294–300.PubMedCrossRef Lu PC, Liu JS, Huang RH, Lo CW, Lai HC, Hwang NHC. The closing behavior of mechanical aortic heart valve prostheses. ASAIO J. 2004;50:294–300.PubMedCrossRef
13.
go back to reference Akutsu T, Saito J, Imai R, Suzuki T, Cao XD. Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. J Artif Organs. 2008;11:75–90.PubMedCrossRef Akutsu T, Saito J, Imai R, Suzuki T, Cao XD. Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. J Artif Organs. 2008;11:75–90.PubMedCrossRef
14.
go back to reference Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech. 2008;41:2539–50.PubMedCrossRef Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech. 2008;41:2539–50.PubMedCrossRef
15.
go back to reference Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M. 3-D simulation of St. Jude Medical bileaflet valve opening process: fluid-structure interaction study and experiment validation. J Heart Valve Dis. 2004;13:804–13.PubMed Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M. 3-D simulation of St. Jude Medical bileaflet valve opening process: fluid-structure interaction study and experiment validation. J Heart Valve Dis. 2004;13:804–13.PubMed
16.
go back to reference Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids. 2007;19:067105.CrossRef Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids. 2007;19:067105.CrossRef
17.
go back to reference Bluestein D, Rambod E, Gharib M. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng. 2000;122:125–34.PubMedCrossRef Bluestein D, Rambod E, Gharib M. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng. 2000;122:125–34.PubMedCrossRef
18.
go back to reference Alemu Y, Bluestein D. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs. 2007;31:677–88.PubMedCrossRef Alemu Y, Bluestein D. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs. 2007;31:677–88.PubMedCrossRef
19.
go back to reference Dumont K, Vierendeels J, Kaminsky R, Van Nooten G, Verdonck P, Bluestein D. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng. 2007;129:558–65.PubMedCrossRef Dumont K, Vierendeels J, Kaminsky R, Van Nooten G, Verdonck P, Bluestein D. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng. 2007;129:558–65.PubMedCrossRef
20.
go back to reference Dumont K, Stijnen JMA, Vierendeels J, Van De Vosse FN, Verdonck PR. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in Fluent. Comp Methods Biomech Biomed Eng. 2004;7:139–46.CrossRef Dumont K, Stijnen JMA, Vierendeels J, Van De Vosse FN, Verdonck PR. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in Fluent. Comp Methods Biomech Biomed Eng. 2004;7:139–46.CrossRef
21.
go back to reference Bang JS, Yoo SM, Kim CN. Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO J. 2006;52:234–42.PubMedCrossRef Bang JS, Yoo SM, Kim CN. Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO J. 2006;52:234–42.PubMedCrossRef
22.
go back to reference Choi CR, Kim CN. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. ASAIO J. 2009;55:428–37.PubMedCrossRef Choi CR, Kim CN. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. ASAIO J. 2009;55:428–37.PubMedCrossRef
23.
go back to reference Ge L, Sotiropoulos F. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys. 2007;225:1782–809.PubMedCrossRef Ge L, Sotiropoulos F. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys. 2007;225:1782–809.PubMedCrossRef
24.
go back to reference Sotiropoulos F, Borazjani I. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput. 2009;47:245–56.PubMedCrossRef Sotiropoulos F, Borazjani I. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput. 2009;47:245–56.PubMedCrossRef
25.
go back to reference Tullio MDD, Cristallo A, Balaras E, Verzicco R. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech. 2009;622:259–90.CrossRef Tullio MDD, Cristallo A, Balaras E, Verzicco R. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech. 2009;622:259–90.CrossRef
26.
go back to reference Li CP, Chen SF, Lo CW, Lu PC. Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO J. 2011;57:188–96.PubMedCrossRef Li CP, Chen SF, Lo CW, Lu PC. Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO J. 2011;57:188–96.PubMedCrossRef
27.
go back to reference Dumont K, Vierendeels J, Verdonck PR. Feasibility study of the dynamic mesh model in Fluent for fluid-structure interaction of a heart valve. In: Brebbia CA, Arnez ZM, Solina F, Stankovski V, editors. Simulations in biomedicine V advances in computational bioengineering. Boston: WIT Press; 2003. p. 169–76. Dumont K, Vierendeels J, Verdonck PR. Feasibility study of the dynamic mesh model in Fluent for fluid-structure interaction of a heart valve. In: Brebbia CA, Arnez ZM, Solina F, Stankovski V, editors. Simulations in biomedicine V advances in computational bioengineering. Boston: WIT Press; 2003. p. 169–76.
28.
go back to reference Vierendeels J, Dumont K, Dick E, Verdonck PR. Stabilization of a fluid-structure coupling procedure for rigid body motion. In: Proc 33rd AIAA Fluid Dynamics Conference and Exhibit; 2003. p. 3720. Vierendeels J, Dumont K, Dick E, Verdonck PR. Stabilization of a fluid-structure coupling procedure for rigid body motion. In: Proc 33rd AIAA Fluid Dynamics Conference and Exhibit; 2003. p. 3720.
29.
go back to reference Bellhouse BJ, Talbot L. The fluid mechanics of the aortic valve. J Fluid Mech. 1969;35:721–35.CrossRef Bellhouse BJ, Talbot L. The fluid mechanics of the aortic valve. J Fluid Mech. 1969;35:721–35.CrossRef
30.
go back to reference Lo CW. Causes of cavitation phenomena in mechanical heart valves. PhD. thesis. Tamkang University, Taipei, Taiwan; 2008. Lo CW. Causes of cavitation phenomena in mechanical heart valves. PhD. thesis. Tamkang University, Taipei, Taiwan; 2008.
31.
go back to reference Lee H, Taenaka Y, Kitamura S. Mechanisms of mechanical heart valve cavitation in an electrohydraulic total artificial heart. ASAIO J. 2005;51:208–13.PubMedCrossRef Lee H, Taenaka Y, Kitamura S. Mechanisms of mechanical heart valve cavitation in an electrohydraulic total artificial heart. ASAIO J. 2005;51:208–13.PubMedCrossRef
Metadata
Title
Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve
Authors
Chi-Pei Li
Po-Chien Lu
Publication date
01-12-2012
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 4/2012
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-012-0650-8

Other articles of this Issue 4/2012

Journal of Artificial Organs 4/2012 Go to the issue