Skip to main content
Top
Published in: Journal of Artificial Organs 4/2012

01-12-2012 | Brief Communication

Long-term results of tissue-engineered small-caliber vascular grafts in a rat carotid arterial replacement model

Authors: Fumiaki Kuwabara, Yuji Narita, Aika Yamawaki-Ogata, Makoto Satake, Hiroaki Kaneko, Hideki Oshima, Akihiko Usui, Yuichi Ueda

Published in: Journal of Artificial Organs | Issue 4/2012

Login to get access

Abstract

The concept of tissue engineered small-caliber vascular grafts (TE-SCVGs) is theoretically ideal. In this study, we evaluated the long-term (more than 1 year) course of TE-SCVGs using a rat carotid arterial replacement model. We fabricated a TE-SCVG scaffold (0.7 mm in diameter) with electrospun nano-scale fibers. Poly-ε-caprolactone was used as a biodegradable polymer. These artificial vessels were then used in carotid arterial replacement performed on Sprague–Dawley rats. The implanted grafts were removed at an early phase (1, 2, 6 weeks), middle phase (12, 24 weeks), and late phase (48, 72 weeks) after implantation. Twenty-nine patent grafts from among the 40 implanted grafts (patency 72.5 %) could be evaluated. No aneurysm formation was observed during the follow-up period. Endothelial cells positive for immunostaining with von Willebrand factor were found to be already attached to the inner surface of the TE-SCVGs in the early phase. The percentage of smooth muscle cell specific marker (α-smooth muscle actin and calponin with fluorescent immunostaining) positive cells, which seemed to be mesenchymal cells in the graft wall, increased with time, while, in contrast, the scaffold material decreased. Even after 72 weeks, however, although the scaffold material had degraded, it had not disappeared completely. These results show that the novel TE-SCVGs we developed were still functioning in the rat carotid arterial circulation after more than 1 year. However, further investigations will be required with regard to regeneration of the SMC layer and the complete degradation of graft materials.
Literature
1.
go back to reference Faries PL, Logerfo FW, Arora S, Hook S, Pulling MC, Akbari CM, Campbell DR, Pomposelli FB Jr. A comparative study of alternative conduits for lower extremity revascularization: all-autogenous conduit versus prosthetic grafts. J Vasc Surg. 2000;32:1080–90.PubMedCrossRef Faries PL, Logerfo FW, Arora S, Hook S, Pulling MC, Akbari CM, Campbell DR, Pomposelli FB Jr. A comparative study of alternative conduits for lower extremity revascularization: all-autogenous conduit versus prosthetic grafts. J Vasc Surg. 2000;32:1080–90.PubMedCrossRef
2.
go back to reference Ballyk PD, Walsh C, Butany J, Ojha M. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech. 1998;31:229–37.PubMedCrossRef Ballyk PD, Walsh C, Butany J, Ojha M. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech. 1998;31:229–37.PubMedCrossRef
3.
go back to reference Haruguchi H, Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs. 2003;6:227–35.PubMedCrossRef Haruguchi H, Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs. 2003;6:227–35.PubMedCrossRef
4.
go back to reference Wu HC, Wang TW, Kang PL, Tsuang YH, Sun JS, Lin FH. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Biomaterials. 2007;28:1385–92.PubMedCrossRef Wu HC, Wang TW, Kang PL, Tsuang YH, Sun JS, Lin FH. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Biomaterials. 2007;28:1385–92.PubMedCrossRef
5.
go back to reference Chan-Park MB, Shen JY, Cao Y, Xiong Y, Liu Y, Rayatpisheh S, Kang GC, Greisler HP. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J Biomed Mater Res A. 2009;88:1104–21.PubMed Chan-Park MB, Shen JY, Cao Y, Xiong Y, Liu Y, Rayatpisheh S, Kang GC, Greisler HP. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J Biomed Mater Res A. 2009;88:1104–21.PubMed
6.
go back to reference Kuwabara F, Narita Y, Yamawaki-Ogata A, Kanie K, Kato R, Satake M, Kaneko H, Oshima H, Usui A, Ueda Y. Novel small-caliber vascular grafts with trimer peptide for acceleration of endothelialization. Ann Thorac Surg. 2012;93:156–63.PubMedCrossRef Kuwabara F, Narita Y, Yamawaki-Ogata A, Kanie K, Kato R, Satake M, Kaneko H, Oshima H, Usui A, Ueda Y. Novel small-caliber vascular grafts with trimer peptide for acceleration of endothelialization. Ann Thorac Surg. 2012;93:156–63.PubMedCrossRef
7.
go back to reference Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matuura N, Sawa Y. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg. 2008;136:900–7.PubMedCrossRef Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matuura N, Sawa Y. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg. 2008;136:900–7.PubMedCrossRef
8.
go back to reference Kagami H, Agata H, Satake M, Narita Y. Considerations on designing scaffolds for soft and hard tissue engineering. In: Khang G, editor. The handbook of intelligent scaffold for regenerative medicine. 1st ed. Singapore: Pan Stanford Publishing; 2012. in press. Kagami H, Agata H, Satake M, Narita Y. Considerations on designing scaffolds for soft and hard tissue engineering. In: Khang G, editor. The handbook of intelligent scaffold for regenerative medicine. 1st ed. Singapore: Pan Stanford Publishing; 2012. in press.
9.
go back to reference Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129:1330–8.PubMedCrossRef Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129:1330–8.PubMedCrossRef
10.
go back to reference Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, Walpoth BH. Degradation and healing characteristics of small-diameter poly (ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563–70.PubMedCrossRef Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, Walpoth BH. Degradation and healing characteristics of small-diameter poly (ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563–70.PubMedCrossRef
11.
go back to reference Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002;8:1249–56.PubMedCrossRef Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002;8:1249–56.PubMedCrossRef
12.
go back to reference Quifiones-Baldrich WJ, Prego A, Ucelay-Gomez R, Vescera CL, Moore WS. Failure of PTFE infrainguinal revascularization: patterns, management alternatives, and outcome. Ann Vasc Surg. 1991;5:163.CrossRef Quifiones-Baldrich WJ, Prego A, Ucelay-Gomez R, Vescera CL, Moore WS. Failure of PTFE infrainguinal revascularization: patterns, management alternatives, and outcome. Ann Vasc Surg. 1991;5:163.CrossRef
13.
go back to reference Zhang WJ, Liu W, Cui L, Cao Y. Tissue engineering of blood vessel. J Cell Mol Med. 2007;11:945–57.PubMedCrossRef Zhang WJ, Liu W, Cui L, Cao Y. Tissue engineering of blood vessel. J Cell Mol Med. 2007;11:945–57.PubMedCrossRef
Metadata
Title
Long-term results of tissue-engineered small-caliber vascular grafts in a rat carotid arterial replacement model
Authors
Fumiaki Kuwabara
Yuji Narita
Aika Yamawaki-Ogata
Makoto Satake
Hiroaki Kaneko
Hideki Oshima
Akihiko Usui
Yuichi Ueda
Publication date
01-12-2012
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 4/2012
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-012-0652-6

Other articles of this Issue 4/2012

Journal of Artificial Organs 4/2012 Go to the issue