Skip to main content
Top
Published in: Brain Tumor Pathology 2/2022

01-04-2022 | Glioblastoma | Review Article

Implications of immune cells in oncolytic herpes simplex virotherapy for glioma

Authors: Yoshihiro Otani, Ji Young Yoo, Toshihiko Shimizu, Kazuhiko Kurozumi, Isao Date, Balveen Kaur

Published in: Brain Tumor Pathology | Issue 2/2022

Login to get access

Abstract

Despite current progress in treatment, glioblastoma (GBM) remains a lethal primary malignant tumor of the central nervous system. Although immunotherapy has recently achieved remarkable survival effectiveness in multiple malignancies, none of the immune checkpoint inhibitors (ICIs) for GBM have shown anti-tumor efficacy in clinical trials. GBM has a characteristic immunosuppressive tumor microenvironment (TME) that results in the failure of ICIs. Oncolytic herpes simplex virotherapy (oHSV) is the most advanced United States Food and Drug Administration-approved virotherapy for advanced metastatic melanoma patients. Recently, another oHSV, Delytact®, was granted conditional approval in Japan against GBM, highlighting it as a promising treatment. Since oncolytic virotherapy can recruit abundant immune cells and modify the immune TME, oncolytic virotherapy for immunologically cold GBM will be an attractive therapeutic option for GBM. However, as these immune cells have roles in both anti-tumor and anti-viral immunity, fine-tuning of the TME using oncolytic virotherapy will be important to maximize the therapeutic efficacy. In this review, we discuss the current knowledge of oHSV, with a focus on the role of immune cells as friend or foe in oncolytic virotherapy.
Literature
1.
go back to reference Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Supplement 5):v1–v100PubMedPubMedCentralCrossRef Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Supplement 5):v1–v100PubMedPubMedCentralCrossRef
2.
go back to reference Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251PubMedCrossRef Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251PubMedCrossRef
3.
go back to reference Otani Y, Ichikawa T, Kurozumi K et al (2019) Dynamic reorganization of microtubule and glioma invasion. Acta Med Okayama 73(4):285–297PubMed Otani Y, Ichikawa T, Kurozumi K et al (2019) Dynamic reorganization of microtubule and glioma invasion. Acta Med Okayama 73(4):285–297PubMed
4.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef
5.
go back to reference Stupp R, Taillibert S, Kanner A et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318(23):2306–2316PubMedPubMedCentralCrossRef Stupp R, Taillibert S, Kanner A et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318(23):2306–2316PubMedPubMedCentralCrossRef
6.
go back to reference Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 6(7):1003–1010PubMedCrossRef Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 6(7):1003–1010PubMedCrossRef
7.
go back to reference Friebel E, Kapolou K, Unger S et al (2020) Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181(7):1626-1642.e1620PubMedCrossRef Friebel E, Kapolou K, Unger S et al (2020) Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181(7):1626-1642.e1620PubMedCrossRef
8.
go back to reference Goswami S, Walle T, Cornish AE et al (2020) Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med 26(1):39–46PubMedCrossRef Goswami S, Walle T, Cornish AE et al (2020) Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med 26(1):39–46PubMedCrossRef
9.
go back to reference Hilf N, Kuttruff-Coqui S, Frenzel K et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245PubMedCrossRef Hilf N, Kuttruff-Coqui S, Frenzel K et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245PubMedCrossRef
10.
go back to reference Keskin DB, Anandappa AJ, Sun J et al (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565(7738):234–239PubMedCrossRef Keskin DB, Anandappa AJ, Sun J et al (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565(7738):234–239PubMedCrossRef
12.
go back to reference Quattrocchi KB, Miller CH, Cush S et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45(2):141–157PubMedCrossRef Quattrocchi KB, Miller CH, Cush S et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45(2):141–157PubMedCrossRef
13.
14.
go back to reference Fares J, Ahmed AU, Ulasov IV et al (2021) Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncol 22(8):1103–1114PubMedCrossRef Fares J, Ahmed AU, Ulasov IV et al (2021) Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncol 22(8):1103–1114PubMedCrossRef
15.
go back to reference Kurozumi K, Fujii K, Shimazu Y et al (2020) Study protocol of a phase I/IIa clinical trial of Ad-SGE-REIC for treatment of recurrent malignant glioma. Future Oncol 16(6):151–159PubMedCrossRef Kurozumi K, Fujii K, Shimazu Y et al (2020) Study protocol of a phase I/IIa clinical trial of Ad-SGE-REIC for treatment of recurrent malignant glioma. Future Oncol 16(6):151–159PubMedCrossRef
16.
go back to reference Kurozumi K, Koizumi S, Otani Y (2021) Gene therapy and viral therapy for malignant glioma. No Shinkei Geka 49(3):608–616PubMed Kurozumi K, Koizumi S, Otani Y (2021) Gene therapy and viral therapy for malignant glioma. No Shinkei Geka 49(3):608–616PubMed
17.
go back to reference Lang FF, Conrad C, Gomez-Manzano C et al (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36(14):1419–1427PubMedPubMedCentralCrossRef Lang FF, Conrad C, Gomez-Manzano C et al (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36(14):1419–1427PubMedPubMedCentralCrossRef
18.
go back to reference Russell L, Swanner J, Jaime-Ramirez AC et al (2018) PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat Commun 9(1):5006PubMedPubMedCentralCrossRef Russell L, Swanner J, Jaime-Ramirez AC et al (2018) PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat Commun 9(1):5006PubMedPubMedCentralCrossRef
19.
go back to reference Martuza RL, Malick A, Markert JM et al (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856PubMedCrossRef Martuza RL, Malick A, Markert JM et al (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856PubMedCrossRef
21.
go back to reference Mineta T, Rabkin SD, Yazaki T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943PubMedCrossRef Mineta T, Rabkin SD, Yazaki T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943PubMedCrossRef
22.
go back to reference Zhou G, Roizman B (2006) Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci USA 103(14):5508–5513PubMedPubMedCentralCrossRef Zhou G, Roizman B (2006) Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci USA 103(14):5508–5513PubMedPubMedCentralCrossRef
23.
go back to reference Uchida H, Marzulli M, Nakano K et al (2013) Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 21(3):561–569PubMedCrossRef Uchida H, Marzulli M, Nakano K et al (2013) Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 21(3):561–569PubMedCrossRef
24.
go back to reference Shibata T, Uchida H, Shiroyama T et al (2016) Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 23(6):479–488PubMedCrossRef Shibata T, Uchida H, Shiroyama T et al (2016) Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 23(6):479–488PubMedCrossRef
25.
go back to reference He B, Gross M, Roizman B (1997) The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94(3):843–848PubMedPubMedCentralCrossRef He B, Gross M, Roizman B (1997) The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94(3):843–848PubMedPubMedCentralCrossRef
26.
go back to reference Farassati F, Yang AD, Lee PW (2001) Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3(8):745–750PubMedCrossRef Farassati F, Yang AD, Lee PW (2001) Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3(8):745–750PubMedCrossRef
27.
go back to reference MacLean AR, ul-Fareed M, Robertson L et al (1991) Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the “a” sequence. J Gen Virol 72(Pt 3):631–639PubMedCrossRef MacLean AR, ul-Fareed M, Robertson L et al (1991) Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the “a” sequence. J Gen Virol 72(Pt 3):631–639PubMedCrossRef
28.
go back to reference Dufour F, Sasseville AM, Chabaud S et al (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFα- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis 16(3):256–271PubMedCrossRef Dufour F, Sasseville AM, Chabaud S et al (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFα- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis 16(3):256–271PubMedCrossRef
29.
go back to reference Todo T, Martuza RL, Rabkin SD et al (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 98(11):6396–6401PubMedPubMedCentralCrossRef Todo T, Martuza RL, Rabkin SD et al (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 98(11):6396–6401PubMedPubMedCentralCrossRef
30.
go back to reference Goldsmith K, Chen W, Johnson DC et al (1998) Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 187(3):341–348PubMedPubMedCentralCrossRef Goldsmith K, Chen W, Johnson DC et al (1998) Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 187(3):341–348PubMedPubMedCentralCrossRef
31.
go back to reference Peters C, Paget M, Tshilenge KT et al (2018) Restriction of replication of oncolytic herpes simplex virus with a deletion of γ34.5 in glioblastoma stem-like cells. J Virol 92(15) Peters C, Paget M, Tshilenge KT et al (2018) Restriction of replication of oncolytic herpes simplex virus with a deletion of γ34.5 in glioblastoma stem-like cells. J Virol 92(15)
32.
go back to reference Kambara H, Okano H, Chiocca EA et al (2005) An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 65(7):2832–2839PubMedCrossRef Kambara H, Okano H, Chiocca EA et al (2005) An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 65(7):2832–2839PubMedCrossRef
33.
go back to reference Hu JC, Coffin RS, Davis CJ et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12(22):6737–6747PubMedCrossRef Hu JC, Coffin RS, Davis CJ et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12(22):6737–6747PubMedCrossRef
34.
go back to reference Kaufman HL, Ruby CE, Hughes T et al (2014) Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2:11PubMedPubMedCentralCrossRef Kaufman HL, Ruby CE, Hughes T et al (2014) Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2:11PubMedPubMedCentralCrossRef
35.
go back to reference Cheema TA, Wakimoto H, Fecci PE et al (2013) Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA 110(29):12006–12011PubMedPubMedCentralCrossRef Cheema TA, Wakimoto H, Fecci PE et al (2013) Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA 110(29):12006–12011PubMedPubMedCentralCrossRef
36.
go back to reference Bolyard C, Meisen WH, Banasavadi-Siddegowda Y et al (2017) BAI1 orchestrates macrophage inflammatory response to HSV infection—implications for oncolytic viral therapy. Clin Cancer Res 23(7):1809–1819PubMedCrossRef Bolyard C, Meisen WH, Banasavadi-Siddegowda Y et al (2017) BAI1 orchestrates macrophage inflammatory response to HSV infection—implications for oncolytic viral therapy. Clin Cancer Res 23(7):1809–1819PubMedCrossRef
37.
go back to reference Fujii K, Kurozumi K, Ichikawa T et al (2013) The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus. Cancer Gene Ther 20(8):437–444PubMedPubMedCentralCrossRef Fujii K, Kurozumi K, Ichikawa T et al (2013) The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus. Cancer Gene Ther 20(8):437–444PubMedPubMedCentralCrossRef
38.
go back to reference Hardcastle J, Kurozumi K, Dmitrieva N et al (2010) Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol Ther 18(2):285–294PubMedCrossRef Hardcastle J, Kurozumi K, Dmitrieva N et al (2010) Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol Ther 18(2):285–294PubMedCrossRef
39.
go back to reference Nair M, Khosla M, Otani Y et al (2020) Enhancing antitumor efficacy of heavily vascularized tumors by RAMBO virus through decreased tumor endothelial cell activation. Cancers (Basel). 12(4):1040PubMedCentralCrossRef Nair M, Khosla M, Otani Y et al (2020) Enhancing antitumor efficacy of heavily vascularized tumors by RAMBO virus through decreased tumor endothelial cell activation. Cancers (Basel). 12(4):1040PubMedCentralCrossRef
40.
go back to reference Tomita Y, Kurozumi K, Yoo JY et al (2019) Oncolytic herpes virus armed with vasculostatin in combination with bevacizumab abrogates glioma invasion via the CCN1 and AKT signaling pathways. Mol Cancer Ther 18(8):1418–1429PubMedCrossRef Tomita Y, Kurozumi K, Yoo JY et al (2019) Oncolytic herpes virus armed with vasculostatin in combination with bevacizumab abrogates glioma invasion via the CCN1 and AKT signaling pathways. Mol Cancer Ther 18(8):1418–1429PubMedCrossRef
42.
go back to reference Rutledge WC, Kong J, Gao J et al (2013) Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res 19(18):4951–4960PubMedCrossRef Rutledge WC, Kong J, Gao J et al (2013) Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res 19(18):4951–4960PubMedCrossRef
43.
go back to reference Markert JM, Medlock MD, Rabkin SD et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10):867–874PubMedCrossRef Markert JM, Medlock MD, Rabkin SD et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10):867–874PubMedCrossRef
44.
go back to reference Markert JM, Razdan SN, Kuo HC et al (2014) A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 22(5):1048–1055PubMedPubMedCentralCrossRef Markert JM, Razdan SN, Kuo HC et al (2014) A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 22(5):1048–1055PubMedPubMedCentralCrossRef
45.
go back to reference Friedman GK, Johnston JM, Bag AK et al (2021) Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med 384(17):1613–1622PubMedPubMedCentralCrossRef Friedman GK, Johnston JM, Bag AK et al (2021) Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med 384(17):1613–1622PubMedPubMedCentralCrossRef
46.
go back to reference Waters AM, Johnston JM, Reddy AT et al (2017) Rationale and design of a phase 1 clinical trial to evaluate HSV G207 alone or with a single radiation dose in children with progressive or recurrent malignant supratentorial brain tumors. Hum Gene Ther Clin Dev 28(1):7–16PubMedPubMedCentralCrossRef Waters AM, Johnston JM, Reddy AT et al (2017) Rationale and design of a phase 1 clinical trial to evaluate HSV G207 alone or with a single radiation dose in children with progressive or recurrent malignant supratentorial brain tumors. Hum Gene Ther Clin Dev 28(1):7–16PubMedPubMedCentralCrossRef
47.
go back to reference Bernstock JD, Bag AK, Fiveash J et al (2020) Design and rationale for first-in-human phase 1 immunovirotherapy clinical trial of oncolytic HSV G207 to treat malignant pediatric cerebellar brain tumors. Hum Gene Ther 31(19–20):1132–1139PubMedPubMedCentralCrossRef Bernstock JD, Bag AK, Fiveash J et al (2020) Design and rationale for first-in-human phase 1 immunovirotherapy clinical trial of oncolytic HSV G207 to treat malignant pediatric cerebellar brain tumors. Hum Gene Ther 31(19–20):1132–1139PubMedPubMedCentralCrossRef
48.
go back to reference Friedman GK, Bernstock JD, Chen D et al (2018) Enhanced sensitivity of patient-derived pediatric high-grade brain tumor xenografts to oncolytic HSV-1 virotherapy correlates with nectin-1 expression. Sci Rep 8(1):13930PubMedPubMedCentralCrossRef Friedman GK, Bernstock JD, Chen D et al (2018) Enhanced sensitivity of patient-derived pediatric high-grade brain tumor xenografts to oncolytic HSV-1 virotherapy correlates with nectin-1 expression. Sci Rep 8(1):13930PubMedPubMedCentralCrossRef
49.
go back to reference Rampling R, Cruickshank G, Papanastassiou V et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 345 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7(10):859–866PubMedCrossRef Rampling R, Cruickshank G, Papanastassiou V et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 345 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7(10):859–866PubMedCrossRef
50.
go back to reference Papanastassiou V, Rampling R, Fraser M et al (2002) The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 9(6):398–406PubMedCrossRef Papanastassiou V, Rampling R, Fraser M et al (2002) The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 9(6):398–406PubMedCrossRef
51.
go back to reference Harrow S, Papanastassiou V, Harland J et al (2004) HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 11(22):1648–1658PubMedCrossRef Harrow S, Papanastassiou V, Harland J et al (2004) HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 11(22):1648–1658PubMedCrossRef
52.
go back to reference Chiocca EA, Solomon I, Nakashima H et al (2021) First-in-human CAN-3110 (ICP-34.5 expressing HSV-1 oncolytic virus) in patients with recurrent high-grade glioma. J Clin Oncol 39(15_suppl):2009CrossRef Chiocca EA, Solomon I, Nakashima H et al (2021) First-in-human CAN-3110 (ICP-34.5 expressing HSV-1 oncolytic virus) in patients with recurrent high-grade glioma. J Clin Oncol 39(15_suppl):2009CrossRef
53.
go back to reference Kurozumi K, Hardcastle J, Thakur R et al (2007) Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 99(23):1768–1781PubMedCrossRef Kurozumi K, Hardcastle J, Thakur R et al (2007) Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 99(23):1768–1781PubMedCrossRef
54.
go back to reference Hong B, Muili K, Bolyard C et al (2019) Suppression of HMGB1 released in the glioblastoma tumor microenvironment reduces tumoral edema. Mol Ther Oncolytics 12:93–102PubMedCrossRef Hong B, Muili K, Bolyard C et al (2019) Suppression of HMGB1 released in the glioblastoma tumor microenvironment reduces tumoral edema. Mol Ther Oncolytics 12:93–102PubMedCrossRef
55.
go back to reference Saha D, Martuza RL, Rabkin SD (2017) Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32(2):253-267.e255PubMedPubMedCentralCrossRef Saha D, Martuza RL, Rabkin SD (2017) Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32(2):253-267.e255PubMedPubMedCentralCrossRef
56.
go back to reference Kim Y, Yoo JY, Lee TJ et al (2018) Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc Natl Acad Sci USA 115(19):4927–4932PubMedPubMedCentralCrossRef Kim Y, Yoo JY, Lee TJ et al (2018) Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc Natl Acad Sci USA 115(19):4927–4932PubMedPubMedCentralCrossRef
57.
go back to reference Yoo JY, Jaime-Ramirez AC, Bolyard C et al (2016) Bortezomib treatment sensitizes oncolytic HSV-1-treated tumors to NK cell immunotherapy. Clin Cancer Res 22(21):5265–5276PubMedPubMedCentralCrossRef Yoo JY, Jaime-Ramirez AC, Bolyard C et al (2016) Bortezomib treatment sensitizes oncolytic HSV-1-treated tumors to NK cell immunotherapy. Clin Cancer Res 22(21):5265–5276PubMedPubMedCentralCrossRef
58.
go back to reference Otani Y, Yoo JY, Lewis CT et al (2022) NOTCH-induced MDSC recruitment after oHSV virotherapy in CNS cancer models modulates antitumor immunotherapy. Clin Cancer Res 28(7):1460–1473PubMedCrossRef Otani Y, Yoo JY, Lewis CT et al (2022) NOTCH-induced MDSC recruitment after oHSV virotherapy in CNS cancer models modulates antitumor immunotherapy. Clin Cancer Res 28(7):1460–1473PubMedCrossRef
59.
go back to reference Bernstock JD, Vicario N, Rong L et al (2019) A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition. Oncoimmunology 8(12):e1678921PubMedPubMedCentralCrossRef Bernstock JD, Vicario N, Rong L et al (2019) A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition. Oncoimmunology 8(12):e1678921PubMedPubMedCentralCrossRef
62.
go back to reference Alvarez-Breckenridge CA, Yu J, Price R et al (2012) NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med 18(12):1827–1834PubMedPubMedCentralCrossRef Alvarez-Breckenridge CA, Yu J, Price R et al (2012) NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med 18(12):1827–1834PubMedPubMedCentralCrossRef
63.
go back to reference Han J, Chen X, Chu J et al (2015) TGFβ treatment enhances glioblastoma virotherapy by inhibiting the innate immune response. Cancer Res 75(24):5273–5282PubMedPubMedCentralCrossRef Han J, Chen X, Chu J et al (2015) TGFβ treatment enhances glioblastoma virotherapy by inhibiting the innate immune response. Cancer Res 75(24):5273–5282PubMedPubMedCentralCrossRef
64.
go back to reference Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19(1):20–27PubMedPubMedCentralCrossRef Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19(1):20–27PubMedPubMedCentralCrossRef
65.
go back to reference Van Hove H, Martens L, Scheyltjens I et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22(6):1021–1035PubMedCrossRef Van Hove H, Martens L, Scheyltjens I et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22(6):1021–1035PubMedCrossRef
66.
go back to reference Wang Q, Hu B, Hu X et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42-56.e46PubMedPubMedCentralCrossRef Wang Q, Hu B, Hu X et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42-56.e46PubMedPubMedCentralCrossRef
67.
go back to reference Uneda A, Kurozumi K, Fujimura A et al (2021) Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration. Acta Neuropathol Commun 9(1):29PubMedPubMedCentralCrossRef Uneda A, Kurozumi K, Fujimura A et al (2021) Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration. Acta Neuropathol Commun 9(1):29PubMedPubMedCentralCrossRef
68.
go back to reference Denton NL, Chen CY, Scott TR et al (2016) Tumor-associated macrophages in oncolytic virotherapy: friend or foe? Biomedicines 4(3):13PubMedCentralCrossRef Denton NL, Chen CY, Scott TR et al (2016) Tumor-associated macrophages in oncolytic virotherapy: friend or foe? Biomedicines 4(3):13PubMedCentralCrossRef
69.
go back to reference Meisen WH, Wohleb ES, Jaime-Ramirez AC et al (2015) The impact of macrophage- and microglia-secreted TNFalpha on oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. Clin Cancer Res 21(14):3274–3285PubMedPubMedCentralCrossRef Meisen WH, Wohleb ES, Jaime-Ramirez AC et al (2015) The impact of macrophage- and microglia-secreted TNFalpha on oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. Clin Cancer Res 21(14):3274–3285PubMedPubMedCentralCrossRef
70.
go back to reference Delwar ZM, Kuo Y, Wen YH et al (2018) Oncolytic virotherapy blockade by microglia and macrophages requires STAT1/3. Cancer Res 78(3):718–730PubMedCrossRef Delwar ZM, Kuo Y, Wen YH et al (2018) Oncolytic virotherapy blockade by microglia and macrophages requires STAT1/3. Cancer Res 78(3):718–730PubMedCrossRef
71.
go back to reference Fortin C, Yang Y, Huang X (2017) Monocytic myeloid-derived suppressor cells regulate T-cell responses against vaccinia virus. Eur J Immunol 47(6):1022–1031PubMedPubMedCentralCrossRef Fortin C, Yang Y, Huang X (2017) Monocytic myeloid-derived suppressor cells regulate T-cell responses against vaccinia virus. Eur J Immunol 47(6):1022–1031PubMedPubMedCentralCrossRef
72.
go back to reference Tan Z, Liu L, Chiu MS et al (2019) Virotherapy-recruited PMN-MDSC infiltration of mesothelioma blocks antitumor CTL by IL-10-mediated dendritic cell suppression. Oncoimmunology. 8(1):e1518672PubMedCrossRef Tan Z, Liu L, Chiu MS et al (2019) Virotherapy-recruited PMN-MDSC infiltration of mesothelioma blocks antitumor CTL by IL-10-mediated dendritic cell suppression. Oncoimmunology. 8(1):e1518672PubMedCrossRef
73.
go back to reference Clements DR, Sterea AM, Kim Y et al (2015) Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. J Immunol 194(9):4397–4412PubMedCrossRef Clements DR, Sterea AM, Kim Y et al (2015) Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. J Immunol 194(9):4397–4412PubMedCrossRef
74.
go back to reference Otani Y, Yoo JY, Chao S et al (2020) Oncolytic HSV-infected glioma cells activate NOTCH in adjacent tumor cells sensitizing tumors to gamma secretase inhibition. Clin Cancer Res 26(10):2381–2392PubMedPubMedCentralCrossRef Otani Y, Yoo JY, Chao S et al (2020) Oncolytic HSV-infected glioma cells activate NOTCH in adjacent tumor cells sensitizing tumors to gamma secretase inhibition. Clin Cancer Res 26(10):2381–2392PubMedPubMedCentralCrossRef
75.
go back to reference Chang AL, Miska J, Wainwright DA et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682PubMedPubMedCentralCrossRef Chang AL, Miska J, Wainwright DA et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682PubMedPubMedCentralCrossRef
76.
go back to reference Alayo QA, Ito H, Passaro C et al (2020) Glioblastoma infiltration of both tumor- and virus-antigen specific cytotoxic T cells correlates with experimental virotherapy responses. Sci Rep 10(1):5095PubMedPubMedCentralCrossRef Alayo QA, Ito H, Passaro C et al (2020) Glioblastoma infiltration of both tumor- and virus-antigen specific cytotoxic T cells correlates with experimental virotherapy responses. Sci Rep 10(1):5095PubMedPubMedCentralCrossRef
77.
go back to reference Ramelyte E, Tastanova A, Balázs Z et al (2021) Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39(3):394-406.e394PubMedCrossRef Ramelyte E, Tastanova A, Balázs Z et al (2021) Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39(3):394-406.e394PubMedCrossRef
78.
go back to reference Markert JM, Liechty PG, Wang W et al (2009) Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 17(1):199–207PubMedCrossRef Markert JM, Liechty PG, Wang W et al (2009) Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 17(1):199–207PubMedCrossRef
79.
go back to reference Todo T (2019) ATIM-14. Results of phase ii clinical trial of oncolytic herpes virus G47δ in patients with glioblastomA. Neuro Oncol 21(Suppl 6):vi4PubMedCentralCrossRef Todo T (2019) ATIM-14. Results of phase ii clinical trial of oncolytic herpes virus G47δ in patients with glioblastomA. Neuro Oncol 21(Suppl 6):vi4PubMedCentralCrossRef
Metadata
Title
Implications of immune cells in oncolytic herpes simplex virotherapy for glioma
Authors
Yoshihiro Otani
Ji Young Yoo
Toshihiko Shimizu
Kazuhiko Kurozumi
Isao Date
Balveen Kaur
Publication date
01-04-2022
Publisher
Springer Nature Singapore
Published in
Brain Tumor Pathology / Issue 2/2022
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-022-00431-8

Other articles of this Issue 2/2022

Brain Tumor Pathology 2/2022 Go to the issue