Skip to main content
Top
Published in: Brain Tumor Pathology 2/2016

01-04-2016 | Review Article

MicroRNA and extracellular vesicles in glioblastoma: small but powerful

Authors: Arun K. Rooj, Marco Mineo, Jakub Godlewski

Published in: Brain Tumor Pathology | Issue 2/2016

Login to get access

Abstract

To promote the tumor growth, angiogenesis, metabolism, and invasion, glioblastoma (GBM) cells subvert the surrounding microenvironment by influencing the endogenous activity of other brain cells including endothelial cells, macrophages, astrocytes, and microglia. Large number of studies indicates that the intra-cellular communication between the different cell types of the GBM microenvironment occurs through the functional transfer of oncogenic components such as proteins, non-coding RNAs, DNA and lipids via the release and uptake of extracellular vesicles (EVs). Unlike the communication through the secretion of chemokines and cytokines, the transfer and gene silencing activity of microRNAs through EVs is more complex as the biogenesis and proper packaging of microRNAs is crucial for their uptake by recipient cells. Although the specific mechanism of EV-derived microRNA uptake and processing in recipient cells is largely unknown, the screening, identifying and finally targeting of the EV-associated pro-tumorigenic microRNAs are emerging as new therapeutic strategy to combat the GBM.
Literature
1.
go back to reference Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef
2.
go back to reference Ostrom QT et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):iv1–iv63PubMedPubMedCentralCrossRef Ostrom QT et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):iv1–iv63PubMedPubMedCentralCrossRef
3.
go back to reference Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110PubMedCrossRef Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110PubMedCrossRef
4.
go back to reference Piwecka M et al (2015) Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol Oncol 9(7):1324–1340PubMedCrossRef Piwecka M et al (2015) Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol Oncol 9(7):1324–1340PubMedCrossRef
6.
go back to reference Denli AM et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235PubMedCrossRef Denli AM et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235PubMedCrossRef
7.
go back to reference Gregory RI et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240PubMedCrossRef Gregory RI et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240PubMedCrossRef
8.
go back to reference Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191PubMedPubMedCentralCrossRef Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191PubMedPubMedCentralCrossRef
10.
go back to reference Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033PubMedCrossRef Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033PubMedCrossRef
11.
go back to reference Ciafre SA et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358PubMedCrossRef Ciafre SA et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358PubMedCrossRef
12.
go back to reference Furnari FB et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710PubMedCrossRef Furnari FB et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710PubMedCrossRef
13.
go back to reference Sumazin P et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381PubMedPubMedCentralCrossRef Sumazin P et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381PubMedPubMedCentralCrossRef
15.
go back to reference Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef
16.
go back to reference Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRef Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRef
18.
go back to reference Tang W et al (2013) Subtyping glioblastoma by combining miRNA and mRNA expression data using compressed sensing-based approach. EURASIP J Bioinf Syst Biol 2013(1):2CrossRef Tang W et al (2013) Subtyping glioblastoma by combining miRNA and mRNA expression data using compressed sensing-based approach. EURASIP J Bioinf Syst Biol 2013(1):2CrossRef
19.
go back to reference Genovese G et al (2012) microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-beta signaling in glioblastoma. Cancer Discov 2(8):736–749PubMedPubMedCentralCrossRef Genovese G et al (2012) microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-beta signaling in glioblastoma. Cancer Discov 2(8):736–749PubMedPubMedCentralCrossRef
22.
go back to reference Hayes J et al (2015) Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature. Mol Oncol 9(3):704–714PubMedCrossRef Hayes J et al (2015) Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature. Mol Oncol 9(3):704–714PubMedCrossRef
23.
24.
go back to reference Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRef Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRef
25.
go back to reference Wang F et al (2014) MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol 35(9):8653–8658PubMedCrossRef Wang F et al (2014) MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol 35(9):8653–8658PubMedCrossRef
26.
go back to reference Kefas B et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572PubMedCrossRef Kefas B et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572PubMedCrossRef
27.
go back to reference Silber J et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6(1):1–17CrossRef Silber J et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6(1):1–17CrossRef
29.
go back to reference Kim J et al (2014) microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 74(5):1541–1553PubMedPubMedCentralCrossRef Kim J et al (2014) microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 74(5):1541–1553PubMedPubMedCentralCrossRef
30.
31.
go back to reference Chen Y et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272(2):197–205PubMedCrossRef Chen Y et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272(2):197–205PubMedCrossRef
32.
33.
go back to reference Corsten MF et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell-delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000PubMedCrossRef Corsten MF et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell-delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000PubMedCrossRef
34.
go back to reference Kwak HJ et al (2011) Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene 30(21):2433–2442PubMedCrossRef Kwak HJ et al (2011) Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene 30(21):2433–2442PubMedCrossRef
35.
go back to reference Sasayama T et al (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125(6):1407–1413PubMedCrossRef Sasayama T et al (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125(6):1407–1413PubMedCrossRef
37.
go back to reference Lavon I et al (2010) Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol 12(5):422–433PubMedPubMedCentral Lavon I et al (2010) Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol 12(5):422–433PubMedPubMedCentral
38.
go back to reference Ernst A et al (2010) De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29(23):3411–3422PubMedCrossRef Ernst A et al (2010) De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29(23):3411–3422PubMedCrossRef
39.
go back to reference Dews M et al (2010) The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res 70(20):8233–8246PubMedPubMedCentralCrossRef Dews M et al (2010) The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res 70(20):8233–8246PubMedPubMedCentralCrossRef
40.
go back to reference Kim H et al (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci 107(5):2183–2188PubMedPubMedCentralCrossRef Kim H et al (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci 107(5):2183–2188PubMedPubMedCentralCrossRef
41.
go back to reference Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021PubMedCrossRef Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021PubMedCrossRef
42.
go back to reference Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRef Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRef
43.
go back to reference Yuan X et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400PubMedCrossRef Yuan X et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400PubMedCrossRef
44.
go back to reference Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRef Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRef
45.
go back to reference Bier A et al (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4(5):665–676PubMedPubMedCentralCrossRef Bier A et al (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4(5):665–676PubMedPubMedCentralCrossRef
46.
go back to reference Sathyan P et al (2015) Mir-21–Sox2 axis delineates glioblastoma subtypes with prognostic impact. J Neurosci 35(45):15097–15112PubMedCrossRef Sathyan P et al (2015) Mir-21–Sox2 axis delineates glioblastoma subtypes with prognostic impact. J Neurosci 35(45):15097–15112PubMedCrossRef
47.
go back to reference Lopez-Bertoni H et al (2015) DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34(30):3994–4004PubMedPubMedCentralCrossRef Lopez-Bertoni H et al (2015) DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34(30):3994–4004PubMedPubMedCentralCrossRef
49.
go back to reference Kefas B et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29(48):15161–15168PubMedPubMedCentralCrossRef Kefas B et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29(48):15161–15168PubMedPubMedCentralCrossRef
50.
go back to reference Floyd DH et al (2014) Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One 9(5):e96239PubMedPubMedCentralCrossRef Floyd DH et al (2014) Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One 9(5):e96239PubMedPubMedCentralCrossRef
51.
go back to reference Godlewski J et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68(22):9125–9130PubMedCrossRef Godlewski J et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68(22):9125–9130PubMedCrossRef
53.
go back to reference Wong HK et al (2015) The cancer genome atlas analysis predicts MicroRNA for targeting cancer growth and vascularization in glioblastoma. Mol Ther 23(7):1234–1247PubMedCrossRef Wong HK et al (2015) The cancer genome atlas analysis predicts MicroRNA for targeting cancer growth and vascularization in glioblastoma. Mol Ther 23(7):1234–1247PubMedCrossRef
55.
go back to reference Zhang Y et al (2014) Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death Differ 21(5):720–734PubMedPubMedCentralCrossRef Zhang Y et al (2014) Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death Differ 21(5):720–734PubMedPubMedCentralCrossRef
56.
go back to reference Gilbertson RJ, Rich JN (2007) Making a tumour’ bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–736PubMedCrossRef Gilbertson RJ, Rich JN (2007) Making a tumour’ bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–736PubMedCrossRef
57.
58.
go back to reference Sun J et al (2015) MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. J Neurooncol 122(3):481–489PubMedCrossRef Sun J et al (2015) MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. J Neurooncol 122(3):481–489PubMedCrossRef
59.
go back to reference Ostergaard L et al (2013) The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Res 73(18):5618–5624PubMedCrossRef Ostergaard L et al (2013) The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Res 73(18):5618–5624PubMedCrossRef
60.
go back to reference Fang L et al (2011) MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 30(7):806–821PubMedCrossRef Fang L et al (2011) MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 30(7):806–821PubMedCrossRef
61.
go back to reference Smits M et al (2012) Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J 26(6):2639–2647PubMedCrossRef Smits M et al (2012) Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J 26(6):2639–2647PubMedCrossRef
62.
go back to reference Bronisz A et al (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 74(3):738–750PubMedPubMedCentralCrossRef Bronisz A et al (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 74(3):738–750PubMedPubMedCentralCrossRef
64.
go back to reference Godlewski J et al (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37(5):620–632PubMedPubMedCentralCrossRef Godlewski J et al (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37(5):620–632PubMedPubMedCentralCrossRef
65.
go back to reference Godlewski J et al (2010) microRNA-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9(14):2742–2748PubMedCrossRef Godlewski J et al (2010) microRNA-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9(14):2742–2748PubMedCrossRef
66.
68.
go back to reference Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33:1–7PubMedCrossRef Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33:1–7PubMedCrossRef
69.
go back to reference Kefas B et al (2010) Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol 12(11):1102–1112PubMedPubMedCentralCrossRef Kefas B et al (2010) Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol 12(11):1102–1112PubMedPubMedCentralCrossRef
70.
go back to reference Masui K et al (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18(5):726–739PubMedCrossRef Masui K et al (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18(5):726–739PubMedCrossRef
72.
go back to reference Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro Oncol 17(Suppl 7):vii9–vii14PubMedCrossRef Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro Oncol 17(Suppl 7):vii9–vii14PubMedCrossRef
75.
go back to reference Ueda R et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci 106(26):10746–10751PubMedPubMedCentralCrossRef Ueda R et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci 106(26):10746–10751PubMedPubMedCentralCrossRef
76.
go back to reference Hussain SF et al (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8(3):261–279PubMedPubMedCentralCrossRef Hussain SF et al (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8(3):261–279PubMedPubMedCentralCrossRef
77.
go back to reference Xu S et al (2014) Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy against murine glioblastoma. J Natl Cancer Inst 106(8):dju162. doi:10.1093/jnci/dju162 Xu S et al (2014) Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy against murine glioblastoma. J Natl Cancer Inst 106(8):dju162. doi:10.​1093/​jnci/​dju162
79.
go back to reference Ohno M et al (2013) Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J Immunother Cancer 1:21PubMedPubMedCentralCrossRef Ohno M et al (2013) Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J Immunother Cancer 1:21PubMedPubMedCentralCrossRef
80.
go back to reference Kosaka A et al (2015) Transgene-derived overexpression of miR-17-92 in CD8 + T-cells confers enhanced cytotoxic activity. Biochem Biophys Res Commun 458(3):549–554PubMedPubMedCentralCrossRef Kosaka A et al (2015) Transgene-derived overexpression of miR-17-92 in CD8 + T-cells confers enhanced cytotoxic activity. Biochem Biophys Res Commun 458(3):549–554PubMedPubMedCentralCrossRef
81.
go back to reference Heijnen HF et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799PubMed Heijnen HF et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799PubMed
82.
go back to reference Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125PubMedCrossRef Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125PubMedCrossRef
83.
go back to reference Dainiak N (1991) Surface membrane-associated regulation of cell assembly, differentiation, and growth. Blood 78(2):264–276PubMed Dainiak N (1991) Surface membrane-associated regulation of cell assembly, differentiation, and growth. Blood 78(2):264–276PubMed
84.
go back to reference Mathivanan S et al (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteom 9(2):197–208CrossRef Mathivanan S et al (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteom 9(2):197–208CrossRef
85.
go back to reference Ostrowski M et al. (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30; sup pp 1–13 Ostrowski M et al. (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30; sup pp 1–13
86.
go back to reference Dolo V et al (1998) Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res 58(19):4468–4474PubMed Dolo V et al (1998) Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res 58(19):4468–4474PubMed
87.
go back to reference Schiera G et al (2007) Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles. J Cell Mol Med 11(6):1384–1394PubMedPubMedCentralCrossRef Schiera G et al (2007) Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles. J Cell Mol Med 11(6):1384–1394PubMedPubMedCentralCrossRef
88.
go back to reference Proia P et al (2008) Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int J Mol Med 21(1):63–67PubMed Proia P et al (2008) Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int J Mol Med 21(1):63–67PubMed
89.
go back to reference Li CC et al (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10(8):1333–1344PubMedPubMedCentralCrossRef Li CC et al (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10(8):1333–1344PubMedPubMedCentralCrossRef
90.
go back to reference Hessvik NP et al (2012) Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta 1819(11–12):1154–1163PubMedCrossRef Hessvik NP et al (2012) Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta 1819(11–12):1154–1163PubMedCrossRef
92.
go back to reference Villarroya-Beltri C et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980PubMedPubMedCentralCrossRef Villarroya-Beltri C et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980PubMedPubMedCentralCrossRef
93.
go back to reference Koppers-Lalic D et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8(6):1649–1658PubMedCrossRef Koppers-Lalic D et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8(6):1649–1658PubMedCrossRef
94.
go back to reference van der Vos KE et al (2016) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol 18(1):58–69PubMedCrossRef van der Vos KE et al (2016) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol 18(1):58–69PubMedCrossRef
95.
go back to reference Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedPubMedCentralCrossRef Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedPubMedCentralCrossRef
96.
97.
go back to reference Gasser O et al (2003) Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 285(2):243–257PubMedCrossRef Gasser O et al (2003) Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 285(2):243–257PubMedCrossRef
98.
go back to reference Eken C et al (2008) Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 180(2):817–824PubMedCrossRef Eken C et al (2008) Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 180(2):817–824PubMedCrossRef
99.
go back to reference Pluskota E et al (2008) Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 112(6):2327–2335PubMedPubMedCentralCrossRef Pluskota E et al (2008) Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 112(6):2327–2335PubMedPubMedCentralCrossRef
100.
go back to reference Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335PubMedCrossRef Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335PubMedCrossRef
101.
go back to reference Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104(8):2543–2548PubMedCrossRef Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104(8):2543–2548PubMedCrossRef
102.
go back to reference Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624PubMedCrossRef Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624PubMedCrossRef
103.
go back to reference Nakase I et al (2015) Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 5:10300PubMedPubMedCentralCrossRef Nakase I et al (2015) Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 5:10300PubMedPubMedCentralCrossRef
104.
go back to reference Svensson KJ et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724PubMedPubMedCentralCrossRef Svensson KJ et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724PubMedPubMedCentralCrossRef
105.
go back to reference Christianson HC et al (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA 110(43):17380–17385PubMedPubMedCentralCrossRef Christianson HC et al (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA 110(43):17380–17385PubMedPubMedCentralCrossRef
106.
go back to reference Atai NA et al (2013) Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol 115(3):343–351PubMedCrossRef Atai NA et al (2013) Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol 115(3):343–351PubMedCrossRef
107.
109.
go back to reference Mineo M et al (2012) Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 15(1):33–45PubMedPubMedCentralCrossRef Mineo M et al (2012) Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 15(1):33–45PubMedPubMedCentralCrossRef
110.
go back to reference Kucharzewska P et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110(18):7312–7317PubMedPubMedCentralCrossRef Kucharzewska P et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110(18):7312–7317PubMedPubMedCentralCrossRef
111.
go back to reference Agrawal R et al (2014) Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing. BMC Genom 15:686CrossRef Agrawal R et al (2014) Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing. BMC Genom 15:686CrossRef
112.
114.
go back to reference Yan W et al (2014) MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 5(24):12908–12915PubMedPubMedCentralCrossRef Yan W et al (2014) MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 5(24):12908–12915PubMedPubMedCentralCrossRef
115.
go back to reference Hu J et al (2016) MiR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell 29(1):49–60PubMedCrossRef Hu J et al (2016) MiR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell 29(1):49–60PubMedCrossRef
116.
go back to reference Chen CC et al (2009) Stereotactic brain biopsy: single center retrospective analysis of complications. Clin Neurol Neurosurg 111(10):835–839PubMedCrossRef Chen CC et al (2009) Stereotactic brain biopsy: single center retrospective analysis of complications. Clin Neurol Neurosurg 111(10):835–839PubMedCrossRef
117.
118.
120.
go back to reference Akers JC et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8(10):e78115PubMedPubMedCentralCrossRef Akers JC et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8(10):e78115PubMedPubMedCentralCrossRef
121.
go back to reference Qu S, Guan J, Liu Y (2015) Identification of microRNAs as novel biomarkers for glioma detection: a meta-analysis based on 11 articles. J Neurol Sci 348(1–2):181–187PubMedCrossRef Qu S, Guan J, Liu Y (2015) Identification of microRNAs as novel biomarkers for glioma detection: a meta-analysis based on 11 articles. J Neurol Sci 348(1–2):181–187PubMedCrossRef
122.
go back to reference Shi L et al (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264PubMedCrossRef Shi L et al (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264PubMedCrossRef
123.
go back to reference Teplyuk NM et al (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol 14(6):689–700PubMedPubMedCentralCrossRef Teplyuk NM et al (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol 14(6):689–700PubMedPubMedCentralCrossRef
124.
go back to reference Roth P et al (2011) A specific miRNA signature in the peripheral blood of glioblastoma patients. J Neurochem 118(3):449–457PubMedCrossRef Roth P et al (2011) A specific miRNA signature in the peripheral blood of glioblastoma patients. J Neurochem 118(3):449–457PubMedCrossRef
125.
126.
go back to reference Bronisz A et al (2012) Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 14(2):159–167PubMedCentralCrossRef Bronisz A et al (2012) Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 14(2):159–167PubMedCentralCrossRef
127.
go back to reference Sun JY et al (2015) MicroRNA-320 inhibits cell proliferation in glioma by targeting E2F1. Mol Med Rep 12(2):2355–2359PubMed Sun JY et al (2015) MicroRNA-320 inhibits cell proliferation in glioma by targeting E2F1. Mol Med Rep 12(2):2355–2359PubMed
Metadata
Title
MicroRNA and extracellular vesicles in glioblastoma: small but powerful
Authors
Arun K. Rooj
Marco Mineo
Jakub Godlewski
Publication date
01-04-2016
Publisher
Springer Japan
Published in
Brain Tumor Pathology / Issue 2/2016
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-016-0259-3

Other articles of this Issue 2/2016

Brain Tumor Pathology 2/2016 Go to the issue

Preface

Preface