Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 4/2022

15-04-2022 | Paget's Disease of Bone | Original Article

Profilin-1 negatively controls osteoclast migration by suppressing the protrusive structures based on branched actin filaments

Authors: Shuhei Kajikawa, Yoichi Ezura, Yayoi Izu, Kazuhisa Nakashima, Masaki Noda, Akira Nifuji

Published in: Journal of Bone and Mineral Metabolism | Issue 4/2022

Login to get access

Abstract

Background

Profilin-1 (Pfn1), an evolutionarily conserved actin-binding protein, is an important regulator of the cytoskeleton. We previously reported the osteoclast-specific Pfn1-conditional knockout (cKO) mice had postnatal osteolytic phenotype with craniofacial and long-bone deformities associated with increased migration of cultured osteoclasts. We hypothesized the increased cellular processes structured with branched actin filaments may underlies the mechanism of increased bone resorption in these mutant mice.

Materials and methods

The morphological structure and cell migration of the cultured osteoclasts were analyzed using fluorescent microscopy and time-lapse image capturing. Fractional migration distances, as well as the index of protrusive structures (%-PB) that evaluates relative border length of the protrusion were compared between the cells from control and Pfn1-cKO mice.

Results

Time-lapse image analysis showed that %-PB was significantly larger in Pfn1-cKO osteoclasts. In addition, the fractional migration distance was positively correlated with the index. When the branched actin filament organization was suppressed by chemical inhibitors, the osteoclast migration was declined. Importantly, the suppression was more extensive in Pfn1-cKO than in control osteoclasts.

Conclusion

Our results indicated the causative involvement of the increased branched actin filament formation at least in part for their excessive migration. Our findings provide a mechanistic rationale for testing novel therapeutic approaches targeting branched actin filaments in osteolytic disorders.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Ralston SH, Albagha OM (2014) Genetics of paget’s disease of bone. Curr Osteoporos Rep 12:263–271CrossRefPubMed Ralston SH, Albagha OM (2014) Genetics of paget’s disease of bone. Curr Osteoporos Rep 12:263–271CrossRefPubMed
3.
go back to reference Gennari L, Rendina D, Falchetti A, Merlotti D (2019) Paget’s disease of bone. Calcif Tissue Int 104:483–500CrossRefPubMed Gennari L, Rendina D, Falchetti A, Merlotti D (2019) Paget’s disease of bone. Calcif Tissue Int 104:483–500CrossRefPubMed
4.
go back to reference Merlotti D, Materozzi M, Bianciardi S, Guarnieri V, Rendina D, Volterrani L, Bellan C, Mingiano C, Picchioni T, Frosali A, Orfanelli U, Cenci S, Gennari L (2020) Mutation of PFN1 gene in an early onset, polyostotic paget-like disease. J Clin Endocrinol Metab 105:2553–2565CrossRef Merlotti D, Materozzi M, Bianciardi S, Guarnieri V, Rendina D, Volterrani L, Bellan C, Mingiano C, Picchioni T, Frosali A, Orfanelli U, Cenci S, Gennari L (2020) Mutation of PFN1 gene in an early onset, polyostotic paget-like disease. J Clin Endocrinol Metab 105:2553–2565CrossRef
5.
go back to reference Scotto di Carlo F, Pazzaglia L, Esposito T, Gianfrancesco F (2020) The loss of profilin 1 causes early onset paget’s disease of bone. J Bone Miner Res 35:1387–1398CrossRefPubMed Scotto di Carlo F, Pazzaglia L, Esposito T, Gianfrancesco F (2020) The loss of profilin 1 causes early onset paget’s disease of bone. J Bone Miner Res 35:1387–1398CrossRefPubMed
6.
go back to reference Böttcher RT, Wiesner S, Braun A, Wimmer R, Berna A, Elad N, Medalia O, Pfeifer A, Aszodi A, Costell M, Fassler R (2009) Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO J 28:1157–1169CrossRefPubMedPubMedCentral Böttcher RT, Wiesner S, Braun A, Wimmer R, Berna A, Elad N, Medalia O, Pfeifer A, Aszodi A, Costell M, Fassler R (2009) Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO J 28:1157–1169CrossRefPubMedPubMedCentral
7.
go back to reference Miyajima D, Hayata T, Suzuki T, Hemmi H, Nakamoto T, Notomi T, Amagasa T, Bottcher RT, Costell M, Fassler R, Ezura Y, Noda M (2012) Profilin1 regulates sternum development and endochondral bone formation. J Biol Chem 287:33545–33553CrossRefPubMedPubMedCentral Miyajima D, Hayata T, Suzuki T, Hemmi H, Nakamoto T, Notomi T, Amagasa T, Bottcher RT, Costell M, Fassler R, Ezura Y, Noda M (2012) Profilin1 regulates sternum development and endochondral bone formation. J Biol Chem 287:33545–33553CrossRefPubMedPubMedCentral
8.
go back to reference Lin W, Izu Y, Smriti A, Kawasaki M, Pawaputanon C, Bottcher RT, Costell M, Moriyama K, Noda M, Ezura Y (2018) Profilin1 is expressed in osteocytes and regulates cell shape and migration. J Cell Physiol 233:259–268CrossRefPubMed Lin W, Izu Y, Smriti A, Kawasaki M, Pawaputanon C, Bottcher RT, Costell M, Moriyama K, Noda M, Ezura Y (2018) Profilin1 is expressed in osteocytes and regulates cell shape and migration. J Cell Physiol 233:259–268CrossRefPubMed
9.
go back to reference Shirakawa J, Kajikawa S, Bottcher RT, Costell M, Izu Y, Hayata T, Noda M, Ezura Y (2019) Profilin 1 negatively regulates osteoclast migration in postnatal skeletal growth, remodeling, and homeostasis in mice. JBMR Plus 3:e10130CrossRefPubMedPubMedCentral Shirakawa J, Kajikawa S, Bottcher RT, Costell M, Izu Y, Hayata T, Noda M, Ezura Y (2019) Profilin 1 negatively regulates osteoclast migration in postnatal skeletal growth, remodeling, and homeostasis in mice. JBMR Plus 3:e10130CrossRefPubMedPubMedCentral
10.
go back to reference Schachtner H, Calaminus SD, Thomas SG, Machesky LM (2013) Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton 70:572–589CrossRefPubMed Schachtner H, Calaminus SD, Thomas SG, Machesky LM (2013) Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton 70:572–589CrossRefPubMed
11.
go back to reference Henty-Ridilla JC, Goode BL (2015) Global resource distribution: allocation of actin building blocks by profilin. Dev Cell 32:5–6CrossRefPubMed Henty-Ridilla JC, Goode BL (2015) Global resource distribution: allocation of actin building blocks by profilin. Dev Cell 32:5–6CrossRefPubMed
12.
go back to reference Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488CrossRefPubMed Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488CrossRefPubMed
13.
go back to reference Kajikawa S, Taguchi Y, Hayata T, Ezura Y, Ueta R, Arimura S, Inoue JI, Noda M, Yamanashi Y (2018) Dok-3 and Dok-1/-2 adaptors play distinctive roles in cell fusion and proliferation during osteoclastogenesis and cooperatively protect mice from osteopenia. Biochem Biophys Res Commun 498:967–974CrossRefPubMed Kajikawa S, Taguchi Y, Hayata T, Ezura Y, Ueta R, Arimura S, Inoue JI, Noda M, Yamanashi Y (2018) Dok-3 and Dok-1/-2 adaptors play distinctive roles in cell fusion and proliferation during osteoclastogenesis and cooperatively protect mice from osteopenia. Biochem Biophys Res Commun 498:967–974CrossRefPubMed
14.
go back to reference Hetrick B, Han MS, Helgeson LA, Nolen BJ (2013) Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. Chem Biol 20:701–712CrossRefPubMedPubMedCentral Hetrick B, Han MS, Helgeson LA, Nolen BJ (2013) Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. Chem Biol 20:701–712CrossRefPubMedPubMedCentral
15.
go back to reference Beckham Y, Vasquez RJ, Stricker J, Sayegh K, Campillo C, Gardel ML (2014) Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly. PLoS ONE 9:e100943CrossRefPubMedPubMedCentral Beckham Y, Vasquez RJ, Stricker J, Sayegh K, Campillo C, Gardel ML (2014) Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly. PLoS ONE 9:e100943CrossRefPubMedPubMedCentral
16.
go back to reference Skruber K, Warp PV, Shklyarov R, Thomas JD, Swanson MS, Henty-Ridilla JL, Read TA, Vitriol EA (2020) Arp2/3 and Mena/VASP require profilin 1 for actin network assembly at the leading edge. Curr Biol 30:2651–2664 (e2655)CrossRefPubMedPubMedCentral Skruber K, Warp PV, Shklyarov R, Thomas JD, Swanson MS, Henty-Ridilla JL, Read TA, Vitriol EA (2020) Arp2/3 and Mena/VASP require profilin 1 for actin network assembly at the leading edge. Curr Biol 30:2651–2664 (e2655)CrossRefPubMedPubMedCentral
17.
go back to reference Destaing O, Saltel F, Géminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416CrossRefPubMedPubMedCentral Destaing O, Saltel F, Géminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416CrossRefPubMedPubMedCentral
18.
go back to reference van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R (2019) Probing the mechanical landscape - new insights into podosome architecture and mechanics. J Cell Sci 132:jcs236828CrossRefPubMed van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R (2019) Probing the mechanical landscape - new insights into podosome architecture and mechanics. J Cell Sci 132:jcs236828CrossRefPubMed
19.
go back to reference Bae YH, Ding Z, Das T, Wells A, Gertler F, Roy P (2010) Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc Natl Acad Sci USA 107:21547–21552CrossRefPubMedPubMedCentral Bae YH, Ding Z, Das T, Wells A, Gertler F, Roy P (2010) Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc Natl Acad Sci USA 107:21547–21552CrossRefPubMedPubMedCentral
20.
go back to reference Bender M, Stritt S, Nurden P, van Eeuwijk JM, Zieger B, Kentouche K, Schulze H, Morbach H, Stegner D, Heinze KG, Dütting S, Gupta S, Witke W, Falet H, Fischer A, Hartwig JH, Nieswandt B (2014) Megakaryocyte-specific profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746CrossRefPubMed Bender M, Stritt S, Nurden P, van Eeuwijk JM, Zieger B, Kentouche K, Schulze H, Morbach H, Stegner D, Heinze KG, Dütting S, Gupta S, Witke W, Falet H, Fischer A, Hartwig JH, Nieswandt B (2014) Megakaryocyte-specific profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746CrossRefPubMed
21.
go back to reference Schoppmeyer R, Zhao R, Cheng H, Hamed M, Liu C, Zhou X, Schwarz EC, Zhou Y, Knorck A, Schwar G, Ji S, Liu L, Long J, Helms V, Hoth M, Yu X, Qu B (2017) Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol 47:1562–1572CrossRefPubMed Schoppmeyer R, Zhao R, Cheng H, Hamed M, Liu C, Zhou X, Schwarz EC, Zhou Y, Knorck A, Schwar G, Ji S, Liu L, Long J, Helms V, Hoth M, Yu X, Qu B (2017) Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol 47:1562–1572CrossRefPubMed
Metadata
Title
Profilin-1 negatively controls osteoclast migration by suppressing the protrusive structures based on branched actin filaments
Authors
Shuhei Kajikawa
Yoichi Ezura
Yayoi Izu
Kazuhisa Nakashima
Masaki Noda
Akira Nifuji
Publication date
15-04-2022
Publisher
Springer Nature Singapore
Published in
Journal of Bone and Mineral Metabolism / Issue 4/2022
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-022-01320-y

Other articles of this Issue 4/2022

Journal of Bone and Mineral Metabolism 4/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine