Skip to main content
Top
Published in: Journal of Neural Transmission 3/2018

01-03-2018 | Neurology and Preclinical Neurological Studies - Review Article

Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys

Authors: C. Karachi, Chantal Francois

Published in: Journal of Neural Transmission | Issue 3/2018

Login to get access

Abstract

Patients with Parkinson’s disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Literature
go back to reference Alderson HL, Latimer MP, Winn P (2008) A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine. Brain Struct Funct 213:247–253PubMedPubMedCentralCrossRef Alderson HL, Latimer MP, Winn P (2008) A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine. Brain Struct Funct 213:247–253PubMedPubMedCentralCrossRef
go back to reference Alessandro S, Ceravolo R, Brusa L, Pierantozzi M, Costa A, Galati S, Placidi F, Romigi A, Iani C, Marzetti F, Peppe A (2010) Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive domains. J Neurol Sci 289:44–48PubMedCrossRef Alessandro S, Ceravolo R, Brusa L, Pierantozzi M, Costa A, Galati S, Placidi F, Romigi A, Iani C, Marzetti F, Peppe A (2010) Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive domains. J Neurol Sci 289:44–48PubMedCrossRef
go back to reference Almirall H, Pigarev I, de la Calzada MD, Pigareva M, Herrero MT, Sagales T (1999) Nocturnal sleep structure and temperature slope in MPTP treated monkeys. J Neural Transm (Vienna) 106:1125–1134CrossRef Almirall H, Pigarev I, de la Calzada MD, Pigareva M, Herrero MT, Sagales T (1999) Nocturnal sleep structure and temperature slope in MPTP treated monkeys. J Neural Transm (Vienna) 106:1125–1134CrossRef
go back to reference Arnulf I, Ferraye M, Fraix V, Benabid AL, Chabardes S, Goetz L, Pollak P, Debu B (2010) Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol 67:546–549PubMedCrossRef Arnulf I, Ferraye M, Fraix V, Benabid AL, Chabardes S, Goetz L, Pollak P, Debu B (2010) Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol 67:546–549PubMedCrossRef
go back to reference Barraud Q, Lambrecq V, Forni C, McGuire S, Hill M, Bioulac B, Balzamo E, Bezard E, Tison F, Ghorayeb I (2009) Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Exp Neurol 219:574–582PubMedCrossRef Barraud Q, Lambrecq V, Forni C, McGuire S, Hill M, Bioulac B, Balzamo E, Bezard E, Tison F, Ghorayeb I (2009) Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Exp Neurol 219:574–582PubMedCrossRef
go back to reference Belaid H, Adrien J, Laffrat E, Tande D, Karachi C, Grabli D, Arnulf I, Clark SD, Drouot X, Hirsch EC, Francois C (2014) Sleep disorders in Parkinsonian macaques: effects of l-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 34:9124–9133PubMedPubMedCentralCrossRef Belaid H, Adrien J, Laffrat E, Tande D, Karachi C, Grabli D, Arnulf I, Clark SD, Drouot X, Hirsch EC, Francois C (2014) Sleep disorders in Parkinsonian macaques: effects of l-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 34:9124–9133PubMedPubMedCentralCrossRef
go back to reference Bliwise DL, Trotti LM, Wilson AG, Greer SA, Wood-Siverio C, Juncos JJ, Factor SA, Freeman A, Rye DB (2012) Daytime alertness in Parkinson’s disease: potentially dose-dependent, divergent effects by drug class. Mov Disord 27:1118–1124PubMedPubMedCentralCrossRef Bliwise DL, Trotti LM, Wilson AG, Greer SA, Wood-Siverio C, Juncos JJ, Factor SA, Freeman A, Rye DB (2012) Daytime alertness in Parkinson’s disease: potentially dose-dependent, divergent effects by drug class. Mov Disord 27:1118–1124PubMedPubMedCentralCrossRef
go back to reference Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727PubMedPubMedCentralCrossRef Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727PubMedPubMedCentralCrossRef
go back to reference Breit S, Lessmann L, Unterbrink D, Popa RC, Gasser T, Schulz JB (2006) Lesion of the pedunculopontine nucleus reverses hyperactivity of the subthalamic nucleus and substantia nigra pars reticulata in a 6-hydroxydopamine rat model. Eur J Neurosci 24:2275–2282PubMedCrossRef Breit S, Lessmann L, Unterbrink D, Popa RC, Gasser T, Schulz JB (2006) Lesion of the pedunculopontine nucleus reverses hyperactivity of the subthalamic nucleus and substantia nigra pars reticulata in a 6-hydroxydopamine rat model. Eur J Neurosci 24:2275–2282PubMedCrossRef
go back to reference Charara A, Smith Y, Parent A (1996) Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 364:254–266PubMedCrossRef Charara A, Smith Y, Parent A (1996) Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 364:254–266PubMedCrossRef
go back to reference Clarac F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57:13–21PubMedCrossRef Clarac F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57:13–21PubMedCrossRef
go back to reference Clark SD, Alderson HL, Winn P, Latimer MP, Nothacker HP, Civelli O (2007) Fusion of diphtheria toxin and urotensin II produces a neurotoxin selective for cholinergic neurons in the rat mesopontine tegmentum. J Neurochem 102:112–120PubMedCrossRef Clark SD, Alderson HL, Winn P, Latimer MP, Nothacker HP, Civelli O (2007) Fusion of diphtheria toxin and urotensin II produces a neurotoxin selective for cholinergic neurons in the rat mesopontine tegmentum. J Neurochem 102:112–120PubMedCrossRef
go back to reference Clements JR, Toth DD, Highfield DA, Grant SJ (1991) Glutamate-like immunoreactivity is present within cholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei. Adv Exp Med Biol 295:127–142PubMedCrossRef Clements JR, Toth DD, Highfield DA, Grant SJ (1991) Glutamate-like immunoreactivity is present within cholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei. Adv Exp Med Biol 295:127–142PubMedCrossRef
go back to reference Collier TJ, Steece-Collier K, Kordower JH (2003) Primate models of Parkinson’s disease. Exp Neurol 183:258–262PubMedCrossRef Collier TJ, Steece-Collier K, Kordower JH (2003) Primate models of Parkinson’s disease. Exp Neurol 183:258–262PubMedCrossRef
go back to reference Courtine G, Roy RR, Hodgson J, McKay H, Raven J, Zhong H, Yang H, Tuszynski MH, Edgerton VR (2005) Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). J Neurophysiol 93:3127–3145PubMedCrossRef Courtine G, Roy RR, Hodgson J, McKay H, Raven J, Zhong H, Yang H, Tuszynski MH, Edgerton VR (2005) Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). J Neurophysiol 93:3127–3145PubMedCrossRef
go back to reference Datta S (2002) Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor. J Neurophysiol 87:1790–1798PubMedCrossRef Datta S (2002) Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor. J Neurophysiol 87:1790–1798PubMedCrossRef
go back to reference Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M (1991) Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat. Brain Res 539:287–303PubMedCrossRef Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M (1991) Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat. Brain Res 539:287–303PubMedCrossRef
go back to reference Deurveilher S, Hennevin E (2001) Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats. Eur J Neurosci 13:1963–1976PubMedCrossRef Deurveilher S, Hennevin E (2001) Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats. Eur J Neurosci 13:1963–1976PubMedCrossRef
go back to reference Emborg ME (2004) Evaluation of animal models of Parkinson’s disease for neuroprotective strategies. J Neurosci Methods 139:121–143PubMedCrossRef Emborg ME (2004) Evaluation of animal models of Parkinson’s disease for neuroprotective strategies. J Neurosci Methods 139:121–143PubMedCrossRef
go back to reference Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214PubMedCrossRef Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. I. Activation of a medullary projection site. Brain Res 411:1–12PubMedCrossRef Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. I. Activation of a medullary projection site. Brain Res 411:1–12PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. Neuroscience 27:639–654PubMedCrossRef Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. Neuroscience 27:639–654PubMedCrossRef
go back to reference Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738PubMedCrossRef Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738PubMedCrossRef
go back to reference Garcia-Rill E, Hyde J, Kezunovic N, Urbano FJ, Petersen E (2015) The physiology of the pedunculopontine nucleus: implications for deep brain stimulation. J Neural Transm 122:225–235PubMedCrossRef Garcia-Rill E, Hyde J, Kezunovic N, Urbano FJ, Petersen E (2015) The physiology of the pedunculopontine nucleus: implications for deep brain stimulation. J Neural Transm 122:225–235PubMedCrossRef
go back to reference Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C, Parkinson Study Group (2001) Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56:1712–1721PubMedCrossRef Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C, Parkinson Study Group (2001) Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56:1712–1721PubMedCrossRef
go back to reference Goetz L, Piallat B, Thibaudier Y, Montigon O, David O, Chabardes S (2012) A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings. J Neurosci Methods 204:306–317PubMedCrossRef Goetz L, Piallat B, Thibaudier Y, Montigon O, David O, Chabardes S (2012) A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings. J Neurosci Methods 204:306–317PubMedCrossRef
go back to reference Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardes S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929PubMedCrossRef Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardes S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929PubMedCrossRef
go back to reference Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, Francois C (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33:11986–11993PubMedCrossRef Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, Francois C (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33:11986–11993PubMedCrossRef
go back to reference Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. In: Brooks VB (ed) Handbook of physiology. The nervous system II, vol V. American Physiological Society, Baltimore, pp 1199–1236 Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. In: Brooks VB (ed) Handbook of physiology. The nervous system II, vol V. American Physiological Society, Baltimore, pp 1199–1236
go back to reference Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586PubMedCrossRef Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586PubMedCrossRef
go back to reference Hazrati LN, Parent A (1992) Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585:267–271PubMedCrossRef Hazrati LN, Parent A (1992) Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585:267–271PubMedCrossRef
go back to reference Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82PubMedCrossRef Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82PubMedCrossRef
go back to reference Heise CE, Teo ZC, Wallace BA, Ashkan K, Benabid AL, Mitrofanis J (2005) Cell survival patterns in the pedunculopontine tegmental nucleus of methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys and 6OHDA-lesioned rats: evidence for differences to idiopathic Parkinson disease patients? Anat Embryol (Berl) 210:287–302CrossRef Heise CE, Teo ZC, Wallace BA, Ashkan K, Benabid AL, Mitrofanis J (2005) Cell survival patterns in the pedunculopontine tegmental nucleus of methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys and 6OHDA-lesioned rats: evidence for differences to idiopathic Parkinson disease patients? Anat Embryol (Berl) 210:287–302CrossRef
go back to reference Hemmi JM, Menzel CR (1995) Foraging strategies of long-tailed macaques, Macaca fascicularis—directional extrapolation. Anim Behav 49:457–464CrossRef Hemmi JM, Menzel CR (1995) Foraging strategies of long-tailed macaques, Macaca fascicularis—directional extrapolation. Anim Behav 49:457–464CrossRef
go back to reference Herrero MT, Hirsch EC, Javoy-Agid F, Obeso JA, Agid Y (1993) Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Res 624:281–285PubMedCrossRef Herrero MT, Hirsch EC, Javoy-Agid F, Obeso JA, Agid Y (1993) Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Res 624:281–285PubMedCrossRef
go back to reference Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA (Washington) 84:5976–5980CrossRef Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA (Washington) 84:5976–5980CrossRef
go back to reference Hsieh KC, Robinson EL, Fuller CA (2008) Sleep architecture in unrestrained rhesus monkeys (Macaca mulatta) synchronized to 24-hour light-dark cycles. Sleep 31:1239–1250PubMedPubMedCentral Hsieh KC, Robinson EL, Fuller CA (2008) Sleep architecture in unrestrained rhesus monkeys (Macaca mulatta) synchronized to 24-hour light-dark cycles. Sleep 31:1239–1250PubMedPubMedCentral
go back to reference Hyacinthe C, Barraud Q, Tison F, Bezard E, Ghorayeb I (2014) D1 receptor agonist improves sleep–wake parameters in experimental parkinsonism. Neurobiol Dis 63:20–24PubMedCrossRef Hyacinthe C, Barraud Q, Tison F, Bezard E, Ghorayeb I (2014) D1 receptor agonist improves sleep–wake parameters in experimental parkinsonism. Neurobiol Dis 63:20–24PubMedCrossRef
go back to reference Jia HG, Yamuy J, Sampogna S, Morales FR, Chase MH (2003) Colocalization of gamma-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study. Brain Res 992:205–219PubMedCrossRef Jia HG, Yamuy J, Sampogna S, Morales FR, Chase MH (2003) Colocalization of gamma-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study. Brain Res 992:205–219PubMedCrossRef
go back to reference Jones BE (1993) The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog Brain Res 98:61–71PubMedCrossRef Jones BE (1993) The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog Brain Res 98:61–71PubMedCrossRef
go back to reference Karachi C, Grabli D, Bernard FA, Tande D, Wattiez N, Belaid H, Bardinet E, Prigent A, Nothacker HP, Hunot S, Hartmann A, Lehericy S, Hirsch EC, Francois C (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120:2745–2754PubMedPubMedCentralCrossRef Karachi C, Grabli D, Bernard FA, Tande D, Wattiez N, Belaid H, Bardinet E, Prigent A, Nothacker HP, Hunot S, Hartmann A, Lehericy S, Hirsch EC, Francois C (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120:2745–2754PubMedPubMedCentralCrossRef
go back to reference Karachi KL, André A, Tandé D, Hirsch EC, Francois C (2014) The mesencephalic locomotor region integrates motor, cognitive, and emotional information: an anatomical substrate for differential roles of the pedunculopontine and the cuneiform nuclei. In: 44th annual meeting of the Society for Neuroscience, Chicago Karachi KL, André A, Tandé D, Hirsch EC, Francois C (2014) The mesencephalic locomotor region integrates motor, cognitive, and emotional information: an anatomical substrate for differential roles of the pedunculopontine and the cuneiform nuclei. In: 44th annual meeting of the Society for Neuroscience, Chicago
go back to reference Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ (2010) Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain 133:1755–1762PubMedCrossRef Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ (2010) Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain 133:1755–1762PubMedCrossRef
go back to reference Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226:111–114PubMedCrossRef Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226:111–114PubMedCrossRef
go back to reference Lai YY, Siegel JM (1990) Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci 10:2727–2734PubMed Lai YY, Siegel JM (1990) Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci 10:2727–2734PubMed
go back to reference Lau B, Welter ML, Belaid H, Fernandez Vidal S, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. Brain 138:1284–1296PubMedCrossRef Lau B, Welter ML, Belaid H, Fernandez Vidal S, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. Brain 138:1284–1296PubMedCrossRef
go back to reference Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209PubMedCrossRef Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209PubMedCrossRef
go back to reference Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231PubMedCrossRef Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231PubMedCrossRef
go back to reference Longo VG (1956) Effects of scopolamine and atropine electroencephalographic and behavioral reactions due to hypothalamic stimulation. J Pharmacol Exp Ther 116:198–208PubMed Longo VG (1956) Effects of scopolamine and atropine electroencephalographic and behavioral reactions due to hypothalamic stimulation. J Pharmacol Exp Ther 116:198–208PubMed
go back to reference Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594PubMedCrossRef Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594PubMedCrossRef
go back to reference MacLaren DA, Santini JA, Russell AL, Markovic T, Clark SD (2014) Deficits in motor performance after pedunculopontine lesions in rats–impairment depends on demands of task. Eur J Neurosci 40:3224–3236PubMedCrossRef MacLaren DA, Santini JA, Russell AL, Markovic T, Clark SD (2014) Deficits in motor performance after pedunculopontine lesions in rats–impairment depends on demands of task. Eur J Neurosci 40:3224–3236PubMedCrossRef
go back to reference Manaye KF, Zweig R, Wu D, Hersh LB, De Lacalle S, Saper CB, German DC (1999) Quantification of cholinergic and select non-cholinergic mesopontine neuronal populations in the human brain. Neuroscience 89:759–770PubMedCrossRef Manaye KF, Zweig R, Wu D, Hersh LB, De Lacalle S, Saper CB, German DC (1999) Quantification of cholinergic and select non-cholinergic mesopontine neuronal populations in the human brain. Neuroscience 89:759–770PubMedCrossRef
go back to reference Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134:2057–2073PubMedPubMedCentralCrossRef Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134:2057–2073PubMedPubMedCentralCrossRef
go back to reference Matsumura M, Kojima J (2001) The role of the pedunculopontine tegmental nucleus in experimental parkinsonism in primates. Stereotact Funct Neurosurg 77:108–115PubMedCrossRef Matsumura M, Kojima J (2001) The role of the pedunculopontine tegmental nucleus in experimental parkinsonism in primates. Stereotact Funct Neurosurg 77:108–115PubMedCrossRef
go back to reference Matsumura M, Nambu A, Yamaji Y, Watanabe K, Imai H, Inase M, Tokuno H, Takada M (2000) Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 98:97–110PubMedCrossRef Matsumura M, Nambu A, Yamaji Y, Watanabe K, Imai H, Inase M, Tokuno H, Takada M (2000) Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 98:97–110PubMedCrossRef
go back to reference Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881PubMedCrossRef Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881PubMedCrossRef
go back to reference McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146PubMedCrossRef McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146PubMedCrossRef
go back to reference Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408PubMedCrossRef Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408PubMedCrossRef
go back to reference Mestre TA, Sidiropoulos C, Hamani C, Poon YY, Lozano AM, Lang AE, Moro E (2016) Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Mov Disord 31:1570–1574PubMedCrossRef Mestre TA, Sidiropoulos C, Hamani C, Poon YY, Lozano AM, Lang AE, Moro E (2016) Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Mov Disord 31:1570–1574PubMedCrossRef
go back to reference Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201PubMedCrossRef Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201PubMedCrossRef
go back to reference Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686PubMedCrossRef Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686PubMedCrossRef
go back to reference Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633PubMedCrossRef Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633PubMedCrossRef
go back to reference Mori S, Sakamoto T, Ohta Y, Takakusaki K, Matsuyama K (1989) Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res 505:66–74PubMedCrossRef Mori S, Sakamoto T, Ohta Y, Takakusaki K, Matsuyama K (1989) Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res 505:66–74PubMedCrossRef
go back to reference Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224PubMedCrossRef Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224PubMedCrossRef
go back to reference MunroDavies LE, Winter J, Aziz TZ, Stein JF (1999) The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Exp Brain Res 129:511–517CrossRef MunroDavies LE, Winter J, Aziz TZ, Stein JF (1999) The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Exp Brain Res 129:511–517CrossRef
go back to reference Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF (2002) Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 125:2418–2430PubMedCrossRef Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF (2002) Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 125:2418–2430PubMedCrossRef
go back to reference Olivier A, Parent A, Poirier LJ (1970) Identification of the thalamic nuclei on the basis of their cholinesterase content in the monkey. J Anat 106:37–50PubMedPubMedCentral Olivier A, Parent A, Poirier LJ (1970) Identification of the thalamic nuclei on the basis of their cholinesterase content in the monkey. J Anat 106:37–50PubMedPubMedCentral
go back to reference Ovadia A, Zhang Z, Gash DM (1995) Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiol Aging 16:931–937PubMedCrossRef Ovadia A, Zhang Z, Gash DM (1995) Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiol Aging 16:931–937PubMedCrossRef
go back to reference Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783PubMedCrossRef Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783PubMedCrossRef
go back to reference Pare D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86PubMedCrossRef Pare D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86PubMedCrossRef
go back to reference Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A (2012) Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced Parkinson disease patients: one-year follow-up. Sleep 35:1637–1642PubMedPubMedCentralCrossRef Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A (2012) Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced Parkinson disease patients: one-year follow-up. Sleep 35:1637–1642PubMedPubMedCentralCrossRef
go back to reference Pereira EA, Nandi D, Jenkinson N, Stein JF, Green AL, Aziz TZ (2011) Pedunculopontine stimulation from primate to patient. J Neural Transm (Vienna) 118:1453–1460CrossRef Pereira EA, Nandi D, Jenkinson N, Stein JF, Green AL, Aziz TZ (2011) Pedunculopontine stimulation from primate to patient. J Neural Transm (Vienna) 118:1453–1460CrossRef
go back to reference Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887PubMedCrossRef Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887PubMedCrossRef
go back to reference Rinne JO, Ma SY, Lee MS, Collan Y, Roytta M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557PubMedCrossRef Rinne JO, Ma SY, Lee MS, Collan Y, Roytta M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557PubMedCrossRef
go back to reference Rolland AS, Tande D, Herrero MT, Luquin MR, Vazquez-Claverie M, Karachi C, Hirsch EC, Francois C (2009) Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J Neurochem 110:1321–1329PubMedCrossRef Rolland AS, Tande D, Herrero MT, Luquin MR, Vazquez-Claverie M, Karachi C, Hirsch EC, Francois C (2009) Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J Neurochem 110:1321–1329PubMedCrossRef
go back to reference Rolland AS, Karachi C, Muriel MP, Hirsch EC, Francois C (2011) Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate. Mov Disord 26:1648–1656PubMedCrossRef Rolland AS, Karachi C, Muriel MP, Hirsch EC, Francois C (2011) Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate. Mov Disord 26:1648–1656PubMedCrossRef
go back to reference Romigi A, Placidi F, Peppe A, Pierantozzi M, Izzi F, Brusa L, Galati S, Moschella V, Marciani MG, Mazzone P, Stanzione P, Stefani A (2008) Pedunculopontine nucleus stimulation influences REM sleep in Parkinson’s disease. Eur J Neurol 15:e64–e65PubMedCrossRef Romigi A, Placidi F, Peppe A, Pierantozzi M, Izzi F, Brusa L, Galati S, Moschella V, Marciani MG, Mazzone P, Stanzione P, Stefani A (2008) Pedunculopontine nucleus stimulation influences REM sleep in Parkinson’s disease. Eur J Neurol 15:e64–e65PubMedCrossRef
go back to reference Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC (2016) Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164:526–537PubMedPubMedCentralCrossRef Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC (2016) Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164:526–537PubMedPubMedCentralCrossRef
go back to reference Ryczko D, Auclair F, Cabelguen JM, Dubuc R (2016) The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod. J Comp Neurol 524:1361–1383PubMedCrossRef Ryczko D, Auclair F, Cabelguen JM, Dubuc R (2016) The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod. J Comp Neurol 524:1361–1383PubMedCrossRef
go back to reference Rye DB (1997) Contributions of the pedunculopontine region to normal and altered REM sleep. Sleep 20:757–788PubMedCrossRef Rye DB (1997) Contributions of the pedunculopontine region to normal and altered REM sleep. Sleep 20:757–788PubMedCrossRef
go back to reference Rye D (2010) Seeing beyond one’s nose: sleep disruption and excessive sleepiness accompany motor disability in the MPTP treated primate. Exp Neurol 222:179–180PubMedCrossRef Rye D (2010) Seeing beyond one’s nose: sleep disruption and excessive sleepiness accompany motor disability in the MPTP treated primate. Exp Neurol 222:179–180PubMedCrossRef
go back to reference Rye DB, Lee HJ, Saper CB, Wainer BH (1988) Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. J Comp Neurol 269:315–341PubMedCrossRef Rye DB, Lee HJ, Saper CB, Wainer BH (1988) Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. J Comp Neurol 269:315–341PubMedCrossRef
go back to reference Schrempf W, Brandt MD, Storch A, Reichmann H (2014) Sleep disorders in Parkinson’s disease. J Parkinsons Dis 4:211–221PubMed Schrempf W, Brandt MD, Storch A, Reichmann H (2014) Sleep disorders in Parkinson’s disease. J Parkinsons Dis 4:211–221PubMed
go back to reference Sebille SB, Belaid H, Philippe AC, Andre A, Lau B, Francois C, Karachi C, Bardinet E (2016) Anatomical evidence of the functional diversity of the mesencephalic locomotor region in primate. Neuroimage 147:66–78PubMedCrossRef Sebille SB, Belaid H, Philippe AC, Andre A, Lau B, Francois C, Karachi C, Bardinet E (2016) Anatomical evidence of the functional diversity of the mesencephalic locomotor region in primate. Neuroimage 147:66–78PubMedCrossRef
go back to reference Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666PubMed Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666PubMed
go back to reference Shink E, Sidibe M, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 382:348–363PubMedCrossRef Shink E, Sidibe M, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 382:348–363PubMedCrossRef
go back to reference Shouse MN, Siegel JM (1992) Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res 571(1):50–63PubMedCrossRef Shouse MN, Siegel JM (1992) Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res 571(1):50–63PubMedCrossRef
go back to reference Sirota MG, Di Prisco GV, Dubuc R (2000) Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys. Eur J Neurosci 12:4081–4092PubMedCrossRef Sirota MG, Di Prisco GV, Dubuc R (2000) Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys. Eur J Neurosci 12:4081–4092PubMedCrossRef
go back to reference Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607PubMedCrossRef Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607PubMedCrossRef
go back to reference Steriade M, Pare D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67PubMedCrossRef Steriade M, Pare D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67PubMedCrossRef
go back to reference Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed
go back to reference Steriade M, Dossi RC, Pare D, Oakson G (1991) Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–4400PubMedPubMedCentralCrossRef Steriade M, Dossi RC, Pare D, Oakson G (1991) Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–4400PubMedPubMedCentralCrossRef
go back to reference Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308PubMedCrossRef Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308PubMedCrossRef
go back to reference Takakusaki K, Saitoh K, Harada H, Okumura T, Sakamoto T (2004) Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 124:207–220PubMedCrossRef Takakusaki K, Saitoh K, Harada H, Okumura T, Sakamoto T (2004) Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 124:207–220PubMedCrossRef
go back to reference Thevathasan W, Coyne TJ, Hyam JA, Kerr G, Jenkinson N, Aziz TZ, Silburn PA (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69:1248–1253PubMedCrossRef Thevathasan W, Coyne TJ, Hyam JA, Kerr G, Jenkinson N, Aziz TZ, Silburn PA (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69:1248–1253PubMedCrossRef
go back to reference Vilensky JA (1983) Gait characteristics of two macaques, with emphasis on relationships with speed. Am J Phys Anthropol 61:255–265PubMedCrossRef Vilensky JA (1983) Gait characteristics of two macaques, with emphasis on relationships with speed. Am J Phys Anthropol 61:255–265PubMedCrossRef
go back to reference Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394PubMedCrossRef Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394PubMedCrossRef
go back to reference Wailke S, Herzog J, Witt K, Deuschl G, Volkmann J (2011) Effect of controlled-release levodopa on the microstructure of sleep in Parkinson’s disease. Eur J Neurol 18:590–596PubMedCrossRef Wailke S, Herzog J, Witt K, Deuschl G, Volkmann J (2011) Effect of controlled-release levodopa on the microstructure of sleep in Parkinson’s disease. Eur J Neurol 18:590–596PubMedCrossRef
go back to reference Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358PubMedCrossRef Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358PubMedCrossRef
go back to reference Webster HH, Jones BE (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res 458:285–302PubMedCrossRef Webster HH, Jones BE (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res 458:285–302PubMedCrossRef
go back to reference Welter ML, Demain A, Ewenczyk C, Czernecki V, Lau B, El Helou A, Belaid H, Yelnik J, Francois C, Bardinet E, Karachi C, Grabli D (2015) PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol 262:1515–1525PubMedCrossRef Welter ML, Demain A, Ewenczyk C, Czernecki V, Lau B, El Helou A, Belaid H, Yelnik J, Francois C, Bardinet E, Karachi C, Grabli D (2015) PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol 262:1515–1525PubMedCrossRef
go back to reference Xiang Y, John P, Yakushin SB, Kunin M, Raphan T, Cohen B (2007) Dynamics of quadrupedal locomotion of monkeys: implications for central control. Exp Brain Res 177:551–572PubMedCrossRef Xiang Y, John P, Yakushin SB, Kunin M, Raphan T, Cohen B (2007) Dynamics of quadrupedal locomotion of monkeys: implications for central control. Exp Brain Res 177:551–572PubMedCrossRef
go back to reference Yong MH, Fook-Chong S, Pavanni R, Lim LL, Tan EK (2011) Case control polysomnographic studies of sleep disorders in Parkinson’s disease. PLoS One 6:e22511PubMedPubMedCentralCrossRef Yong MH, Fook-Chong S, Pavanni R, Lim LL, Tan EK (2011) Case control polysomnographic studies of sleep disorders in Parkinson’s disease. PLoS One 6:e22511PubMedPubMedCentralCrossRef
go back to reference Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46PubMedCrossRef Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46PubMedCrossRef
Metadata
Title
Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys
Authors
C. Karachi
Chantal Francois
Publication date
01-03-2018
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 3/2018
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-017-1678-y

Other articles of this Issue 3/2018

Journal of Neural Transmission 3/2018 Go to the issue

Neurology and Preclinical Neurological Studies - Review Article

Gene therapy approaches in the non-human primate model of Parkinson’s disease

Neurology and Preclinical Neurological Studies - Review Article

Parallel basal ganglia circuits for decision making

Neurology and Preclinical Neurological Studies - Review Article

Dysregulation of striatal projection neurons in Parkinson’s disease