Skip to main content
Top
Published in: European Spine Journal 3/2015

01-04-2015 | Original Article

Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement

Authors: Juan S. Uribe, Jeffrey E. Harris, J. M. Beckman, Alexander W. L. Turner, Gregory M. Mundis, Behrooz A. Akbarnia

Published in: European Spine Journal | Special Issue 3/2015

Login to get access

Abstract

Purpose

Restoring sagittal alignment is an important factor in the treatment of spinal deformities. Recent investigations have determined that releasing the anterior longitudinal ligament (ALL) and placing hyperlordotic cages can increase lordosis, while minimizing need for 3 column osteotomies. The influences of parameters such as cage height and angle have not been determined. Finite element analysis was employed to assess the extent of lordosis achievable after placement of different sized lordotic cages.

Methods

A 3-dimensional model of a L3–4 segment was used. Disc distraction was simulated by inserting interbody cages mid-body in the disc space. Analyses were performed in the following conditions: (1) intact, (2) ALL release, (3) ALL release + facetectomy, and (4) ALL release + posterior column osteotomy. Changes in segmental lordosis, disc height, foraminal height, and foraminal area were measured.

Results

After ALL resection and insertion of hyperlordotic cages, lordosis was increased in all cases. The lordosis achieved by the shorter cages was less due to posterior disc height maintained by the facet joints. A facetectomy increased segmental lordosis, but led to contact between the spinous processes. For some configurations, a posterior column osteotomy was required if the end goal was to match cage angle to intradiscal angle.

Conclusion

Increased segmental lumbar lordosis is achievable with hyperlordotic cages after ALL resection. Increased cage height tended to increase the amount of lordosis achieved, although in some cases additional posterior bone resection was required to maximize lordosis. Further studies are needed to evaluate the impact on regional lumbar lordosis.
Literature
1.
go back to reference Bridwell KH, Lewis SJ, Lenke LG, Baldus C, Blanke K (2003) Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Joint Surg Am 85-A:454–463PubMed Bridwell KH, Lewis SJ, Lenke LG, Baldus C, Blanke K (2003) Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Joint Surg Am 85-A:454–463PubMed
2.
go back to reference Bridwell KH (2006) Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine 31:S171–S178CrossRefPubMed Bridwell KH (2006) Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine 31:S171–S178CrossRefPubMed
3.
go back to reference Buchowski JM, Bridwell KH, Lenke LG et al (2007) Neurologic complications of lumbar pedicle subtraction osteotomy: a 10-year assessment. Spine 32:2245–2252CrossRefPubMed Buchowski JM, Bridwell KH, Lenke LG et al (2007) Neurologic complications of lumbar pedicle subtraction osteotomy: a 10-year assessment. Spine 32:2245–2252CrossRefPubMed
4.
go back to reference Cho KJ, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30:2030–2037CrossRefPubMed Cho KJ, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30:2030–2037CrossRefPubMed
5.
go back to reference Gill JB, Levin A, Burd T, Longley M (2008) Corrective osteotomies in spine surgery. J Bone Joint Surg Am 90:2509–2520CrossRefPubMed Gill JB, Levin A, Burd T, Longley M (2008) Corrective osteotomies in spine surgery. J Bone Joint Surg Am 90:2509–2520CrossRefPubMed
6.
go back to reference Godde S, Fritsch E, Dienst M, Kohn D (2003) Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine 28:1693–1699PubMed Godde S, Fritsch E, Dienst M, Kohn D (2003) Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine 28:1693–1699PubMed
7.
go back to reference Lafage V, Schwab F, Vira S et al (2011) Does vertebral level of pedicle subtraction osteotomy correlate with degree of spinopelvic parameter correction? J Neurosurg Spine 14:184–191CrossRefPubMed Lafage V, Schwab F, Vira S et al (2011) Does vertebral level of pedicle subtraction osteotomy correlate with degree of spinopelvic parameter correction? J Neurosurg Spine 14:184–191CrossRefPubMed
8.
go back to reference Schwab FJ, Patel A, Shaffrey CI et al (2012) Sagittal realignment failures following pedicle subtraction osteotomy surgery: are we doing enough? Clinical article. J Neurosurg Spine 16:539–546CrossRefPubMed Schwab FJ, Patel A, Shaffrey CI et al (2012) Sagittal realignment failures following pedicle subtraction osteotomy surgery: are we doing enough? Clinical article. J Neurosurg Spine 16:539–546CrossRefPubMed
9.
go back to reference Berjano P, Aebi M (2015) Pedicle subtraction osteotomies (PSO) in the lumbar spine for sagittal deformities. Eur Spine J 24(Suppl 1):49–57CrossRef Berjano P, Aebi M (2015) Pedicle subtraction osteotomies (PSO) in the lumbar spine for sagittal deformities. Eur Spine J 24(Suppl 1):49–57CrossRef
10.
go back to reference Deukmedjian AR, Dakwar E, Ahmadian A, Smith DA, Uribe JS (2012) Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J 2012:789698CrossRef Deukmedjian AR, Dakwar E, Ahmadian A, Smith DA, Uribe JS (2012) Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J 2012:789698CrossRef
11.
go back to reference Deukmedjian AR, Le TV, Baaj AA, Dakwar E, Smith DA, Uribe JS (2012) Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases. J Neurosurg Spine 17:530–539CrossRefPubMed Deukmedjian AR, Le TV, Baaj AA, Dakwar E, Smith DA, Uribe JS (2012) Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases. J Neurosurg Spine 17:530–539CrossRefPubMed
12.
go back to reference Manwaring JC, Bach K, Ahmadian AA, Deukmedjian AR, Smith DA, Uribe JS (2014) Management of sagittal balance in adult spinal deformity with minimally invasive anterolateral lumbar interbody fusion: a preliminary radiographic study. J Neurosurg Spine 20:515–522CrossRefPubMed Manwaring JC, Bach K, Ahmadian AA, Deukmedjian AR, Smith DA, Uribe JS (2014) Management of sagittal balance in adult spinal deformity with minimally invasive anterolateral lumbar interbody fusion: a preliminary radiographic study. J Neurosurg Spine 20:515–522CrossRefPubMed
13.
go back to reference Uribe JS, Smith DA, Dakwar E et al (2012) Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine 17:476–485CrossRefPubMed Uribe JS, Smith DA, Dakwar E et al (2012) Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine 17:476–485CrossRefPubMed
14.
go back to reference Akbarnia BA, Mundis GM Jr, Moazzaz P et al (2014) Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transpsoas approach and ALL release. J Spinal Disord Tech 27:29–39CrossRefPubMed Akbarnia BA, Mundis GM Jr, Moazzaz P et al (2014) Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transpsoas approach and ALL release. J Spinal Disord Tech 27:29–39CrossRefPubMed
15.
go back to reference Berjano P, Damilano M, Lamartina C (2012) Sagittal alignment correction and reconstruction of lumbar post-traumatic kyphosis via MIS lateral approach. Eur Spine J 21:2718–2720CrossRefPubMedCentralPubMed Berjano P, Damilano M, Lamartina C (2012) Sagittal alignment correction and reconstruction of lumbar post-traumatic kyphosis via MIS lateral approach. Eur Spine J 21:2718–2720CrossRefPubMedCentralPubMed
16.
go back to reference Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(Suppl 2):S242–S253CrossRefPubMed Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(Suppl 2):S242–S253CrossRefPubMed
17.
go back to reference Rohlmann A, Bauer L, Zander T, Bergmann G, Wilke HJ (2006) Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech 39:981–989CrossRefPubMed Rohlmann A, Bauer L, Zander T, Bergmann G, Wilke HJ (2006) Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech 39:981–989CrossRefPubMed
18.
go back to reference Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22:377–384CrossRef Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22:377–384CrossRef
19.
go back to reference Hegazy RM, Abdelrahman AY, Azab WA (2014) Computed tomographic evaluation of C5 root exit foramen in patients with cervical spondylotic myelopathy. Surg Neurol Int 5:S59–S61PubMedCentralPubMed Hegazy RM, Abdelrahman AY, Azab WA (2014) Computed tomographic evaluation of C5 root exit foramen in patients with cervical spondylotic myelopathy. Surg Neurol Int 5:S59–S61PubMedCentralPubMed
20.
go back to reference Grubb SA, Lipscomb HJ (1992) Diagnostic findings in painful adult scoliosis. Spine (Phila Pa 1976) 17:518–527CrossRef Grubb SA, Lipscomb HJ (1992) Diagnostic findings in painful adult scoliosis. Spine (Phila Pa 1976) 17:518–527CrossRef
21.
go back to reference Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM (2010) A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine 35:S322–S330CrossRefPubMed Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM (2010) A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine 35:S322–S330CrossRefPubMed
22.
go back to reference Schwab F, Lafage V, Patel A, Farcy JP (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976) 34:1828–1833CrossRef Schwab F, Lafage V, Patel A, Farcy JP (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976) 34:1828–1833CrossRef
23.
go back to reference Baldus CR, Bridwell KH, Lenke LG, Okubadejo GO (2010) Can we safely reduce blood loss during lumbar pedicle subtraction osteotomy procedures using tranexamic acid or aprotinin? A comparative study with controls. Spine (Phila Pa 1976) 35:235–239CrossRef Baldus CR, Bridwell KH, Lenke LG, Okubadejo GO (2010) Can we safely reduce blood loss during lumbar pedicle subtraction osteotomy procedures using tranexamic acid or aprotinin? A comparative study with controls. Spine (Phila Pa 1976) 35:235–239CrossRef
24.
go back to reference Mummaneni PV, Dhall SS, Ondra SL, Mummaneni VP, Berven S (2008) Pedicle subtraction osteotomy. Neurosurgery 63:171–176CrossRefPubMed Mummaneni PV, Dhall SS, Ondra SL, Mummaneni VP, Berven S (2008) Pedicle subtraction osteotomy. Neurosurgery 63:171–176CrossRefPubMed
25.
go back to reference Costanzo G, Zoccali C, Maykowski P, Walter CM, Skoch J, Baaj AA (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23(Suppl 6):699–704CrossRefPubMed Costanzo G, Zoccali C, Maykowski P, Walter CM, Skoch J, Baaj AA (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23(Suppl 6):699–704CrossRefPubMed
Metadata
Title
Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement
Authors
Juan S. Uribe
Jeffrey E. Harris
J. M. Beckman
Alexander W. L. Turner
Gregory M. Mundis
Behrooz A. Akbarnia
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue Special Issue 3/2015
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-015-3872-7

Other articles of this Special Issue 3/2015

European Spine Journal 3/2015 Go to the issue