Skip to main content
Top
Published in: Pediatric Nephrology 12/2022

Open Access 26-03-2022 | Acute Kidney Injury | Review

Cellular senescence and acute kidney injury

Authors: Xiaoxi Lin, Heng Jin, Yanfen Chai, Songtao Shou

Published in: Pediatric Nephrology | Issue 12/2022

Login to get access

Abstract

Acute kidney injury (AKI) is a common clinical complication characterized by a sudden deterioration of the kidney’s excretory function, which normally occurs secondary to another serious illness. AKI is an important risk factor for chronic kidney disease (CKD) occurrence and progression to kidney failure. It is, therefore, crucial to block the development of AKI as early as possible. To date, existing animal studies have shown that senescence occurs in the early stage of AKI and is extremely critical to prognosis. Cellular senescence is an irreversible process of cell cycle arrest that is accompanied by alterations at the transcriptional, metabolic, and secretory levels along with modified cellular morphology and chromatin organization. Acute cellular senescence tends to play an active role, whereas chronic senescence plays a dominant role in the progression of AKI to CKD. The occurrence of chronic senescence is inseparable from senescence-associated secretory phenotype (SASP) and senescence-related pathways. SASP acts on normal cells to amplify the senescence signal through senescence-related pathways. Senescence can be improved by initiating reprogramming, which plays a crucial role in blocking the progression of AKI to CKD. This review integrates the existing studies on senescence in AKI from several aspects to find meaningful research directions to improve the prognosis of AKI and prevent the progression of CKD.
Literature
1.
go back to reference James MT, Bhatt M, Pannu N, Tonelli M et al (2020) Long-term outcomes of acute kidney injury and strategies for improved care. Nat Rev Nephrol 16:193–205PubMedCrossRef James MT, Bhatt M, Pannu N, Tonelli M et al (2020) Long-term outcomes of acute kidney injury and strategies for improved care. Nat Rev Nephrol 16:193–205PubMedCrossRef
2.
go back to reference Wang AY, Bellomo R, Cass A, Finfer S, Gattas D, Myburgh J et al (2015) Health-related quality of life in survivors of acute kidney injury: the prolonged outcomes study of the randomized evaluation of normal versus augmented level replacement therapy study outcomes. Nephrology (Carlton) 20:492–498CrossRef Wang AY, Bellomo R, Cass A, Finfer S, Gattas D, Myburgh J et al (2015) Health-related quality of life in survivors of acute kidney injury: the prolonged outcomes study of the randomized evaluation of normal versus augmented level replacement therapy study outcomes. Nephrology (Carlton) 20:492–498CrossRef
3.
go back to reference Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C et al (2019) Cellular senescence: defining a path forward. Cell 179:813–827PubMedCrossRef Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C et al (2019) Cellular senescence: defining a path forward. Cell 179:813–827PubMedCrossRef
5.
go back to reference De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78PubMedPubMedCentralCrossRef De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78PubMedPubMedCentralCrossRef
6.
go back to reference Lessard F, Igelmann S, Trahan C, Huot G, Saint-Germain E, Mignacca L et al (2018) Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol 20:789–799PubMedCrossRef Lessard F, Igelmann S, Trahan C, Huot G, Saint-Germain E, Mignacca L et al (2018) Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol 20:789–799PubMedCrossRef
7.
go back to reference Rule AD, Sasiwimonphan K, Lieske JC, Keddis MT, Torres VE, Vrtiska TJ (2012) Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am J Kidney Dis 59:611–618PubMedPubMedCentralCrossRef Rule AD, Sasiwimonphan K, Lieske JC, Keddis MT, Torres VE, Vrtiska TJ (2012) Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am J Kidney Dis 59:611–618PubMedPubMedCentralCrossRef
8.
go back to reference Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090PubMedPubMedCentralCrossRef Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090PubMedPubMedCentralCrossRef
9.
go back to reference Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM et al (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152:340–351PubMedPubMedCentralCrossRef Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM et al (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152:340–351PubMedPubMedCentralCrossRef
10.
go back to reference Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118PubMedCrossRef Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118PubMedCrossRef
11.
go back to reference Jin H, Zhang Y, Ding Q, Wang SS, Rastogi P, Dai DF et al (2019) Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 4:e125490PubMedCentralCrossRef Jin H, Zhang Y, Ding Q, Wang SS, Rastogi P, Dai DF et al (2019) Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 4:e125490PubMedCentralCrossRef
12.
go back to reference Wang Y, Wang Y, Yang M, Ma X (2021) Implication of cellular senescence in the progression of chronic kidney disease and the treatment potencies. Biomed Pharmacother 135:111191PubMedCrossRef Wang Y, Wang Y, Yang M, Ma X (2021) Implication of cellular senescence in the progression of chronic kidney disease and the treatment potencies. Biomed Pharmacother 135:111191PubMedCrossRef
13.
go back to reference Zhao L, Hu C, Han F, Chen D, Ma Y, Wang J et al (2020) Cellular senescence, a novel therapeutic target for mesenchymal stem cells in acute kidney injury. J Cell Mol Med 25:629–638PubMedCentralCrossRef Zhao L, Hu C, Han F, Chen D, Ma Y, Wang J et al (2020) Cellular senescence, a novel therapeutic target for mesenchymal stem cells in acute kidney injury. J Cell Mol Med 25:629–638PubMedCentralCrossRef
14.
go back to reference Lim H, Park BK, Shin SY, Kwon YS, Kim HP (2017) Methyl caffeate and some plant constituents inhibit age-related inflammation: effects on senescence-associated secretory phenotype (SASP) formation. Arch Pharm Res 40:524–535PubMedCrossRef Lim H, Park BK, Shin SY, Kwon YS, Kim HP (2017) Methyl caffeate and some plant constituents inhibit age-related inflammation: effects on senescence-associated secretory phenotype (SASP) formation. Arch Pharm Res 40:524–535PubMedCrossRef
15.
go back to reference En A, Takauji Y, Ayusawa D, Fujii M (2020) The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP). Exp Cell Res 390:111927PubMedCrossRef En A, Takauji Y, Ayusawa D, Fujii M (2020) The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP). Exp Cell Res 390:111927PubMedCrossRef
16.
go back to reference Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132-147.e16PubMedPubMedCentralCrossRef Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132-147.e16PubMedPubMedCentralCrossRef
19.
go back to reference Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593PubMedPubMedCentralCrossRef Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593PubMedPubMedCentralCrossRef
20.
go back to reference Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628PubMedCrossRef Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628PubMedCrossRef
21.
go back to reference Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L et al (2021) Inflammaging and complement system: a link between acute kidney injury and chronic graft damage. Front Immunol 11:734CrossRef Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L et al (2021) Inflammaging and complement system: a link between acute kidney injury and chronic graft damage. Front Immunol 11:734CrossRef
22.
go back to reference Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276PubMedPubMedCentralCrossRef Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276PubMedPubMedCentralCrossRef
23.
go back to reference Knoppert SN, Valentijn FA, Nguyen TQ, Goldschmeding R, Falke LL (2019) Cellular senescence and the kidney: potential therapeutic targets and tools. Front Pharmacol 10:770PubMedPubMedCentralCrossRef Knoppert SN, Valentijn FA, Nguyen TQ, Goldschmeding R, Falke LL (2019) Cellular senescence and the kidney: potential therapeutic targets and tools. Front Pharmacol 10:770PubMedPubMedCentralCrossRef
24.
go back to reference Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118PubMedPubMedCentralCrossRef Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118PubMedPubMedCentralCrossRef
25.
go back to reference Xu X, Fan M, He X, Liu J et al (2014) Aging aggravates long-term renal ischemia-reperfusion injury in a rat model. J Surg Res 187:289–296PubMedCrossRef Xu X, Fan M, He X, Liu J et al (2014) Aging aggravates long-term renal ischemia-reperfusion injury in a rat model. J Surg Res 187:289–296PubMedCrossRef
27.
go back to reference Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130PubMedCrossRef Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130PubMedCrossRef
28.
go back to reference Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733PubMedPubMedCentralCrossRef Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733PubMedPubMedCentralCrossRef
29.
31.
go back to reference Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 27:2652-2660.e4PubMedPubMedCentralCrossRef Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 27:2652-2660.e4PubMedPubMedCentralCrossRef
32.
go back to reference Alessio N, Aprile D, Squillaro T, Di Bernardo G (2019) The senescence-associated secretory phenotype (SASP) from mesenchymal stromal cells impairs growth of immortalized prostate cells but has no effect on metastatic prostatic cancer cells. Aging (Albany NY) 11:5817–5828CrossRef Alessio N, Aprile D, Squillaro T, Di Bernardo G (2019) The senescence-associated secretory phenotype (SASP) from mesenchymal stromal cells impairs growth of immortalized prostate cells but has no effect on metastatic prostatic cancer cells. Aging (Albany NY) 11:5817–5828CrossRef
33.
go back to reference Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J et al (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16:718–735PubMedPubMedCentralCrossRef Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J et al (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16:718–735PubMedPubMedCentralCrossRef
34.
go back to reference Taddei ML, Cavallini L, Comito G, Giannoniet E et al (2014) Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol Oncol 8:1729–1746PubMedPubMedCentralCrossRef Taddei ML, Cavallini L, Comito G, Giannoniet E et al (2014) Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol Oncol 8:1729–1746PubMedPubMedCentralCrossRef
36.
go back to reference Li C, Shen Y, Huang L, Liu C, Wang J (2021) Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J 35:e21229PubMed Li C, Shen Y, Huang L, Liu C, Wang J (2021) Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J 35:e21229PubMed
37.
go back to reference Bonventre JV (2014) Maladaptive proximal tubule repair: cell cycle arrest. Nephron Clin Pract 127:61–64PubMedCrossRef Bonventre JV (2014) Maladaptive proximal tubule repair: cell cycle arrest. Nephron Clin Pract 127:61–64PubMedCrossRef
38.
go back to reference Bernet JD, Doles JD, Hall JK, Tanaka KK, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271PubMedPubMedCentralCrossRef Bernet JD, Doles JD, Hall JK, Tanaka KK, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271PubMedPubMedCentralCrossRef
39.
go back to reference Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY et al (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20:255–264PubMedPubMedCentralCrossRef Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY et al (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20:255–264PubMedPubMedCentralCrossRef
40.
go back to reference Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42PubMedCrossRef Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42PubMedCrossRef
41.
go back to reference Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435PubMedPubMedCentralCrossRef Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435PubMedPubMedCentralCrossRef
42.
go back to reference Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 108:9226–9231PubMedPubMedCentralCrossRef Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 108:9226–9231PubMedPubMedCentralCrossRef
43.
go back to reference Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL et al (2015) KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 125:1620–1636PubMedPubMedCentralCrossRef Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL et al (2015) KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 125:1620–1636PubMedPubMedCentralCrossRef
44.
go back to reference Wilflingseder J, Willi M, Lee HK, Olauson H, Jankowski J, Ichimura T et al (2020) Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury. Nat Commun 11:3383PubMedPubMedCentralCrossRef Wilflingseder J, Willi M, Lee HK, Olauson H, Jankowski J, Ichimura T et al (2020) Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury. Nat Commun 11:3383PubMedPubMedCentralCrossRef
46.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef
48.
go back to reference Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89PubMedCrossRef Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89PubMedCrossRef
49.
go back to reference Aydin B, Mazzoni EO (2019) Cell reprogramming: the many roads to success. Annu Rev Cell Dev Biol 35:433–452PubMedCrossRef Aydin B, Mazzoni EO (2019) Cell reprogramming: the many roads to success. Annu Rev Cell Dev Biol 35:433–452PubMedCrossRef
50.
go back to reference Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139PubMedPubMedCentralCrossRef Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139PubMedPubMedCentralCrossRef
51.
go back to reference Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M et al (2016) Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354:aaf4445PubMedCrossRef Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M et al (2016) Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354:aaf4445PubMedCrossRef
52.
go back to reference Mosteiro L, Pantoja C, de Martino A, Serrano M (2018) Senescence promotes in vivo reprogramming through p16(INK)(4a) and IL-6. Aging Cell 17:e12711CrossRef Mosteiro L, Pantoja C, de Martino A, Serrano M (2018) Senescence promotes in vivo reprogramming through p16(INK)(4a) and IL-6. Aging Cell 17:e12711CrossRef
53.
go back to reference Kim JW, Kuk MU, Choy HE, Park SC, Park JT (2019) Mitochondrial metabolic reprograming via BRAF inhibition ameliorates senescence. Exp Gerontol 126:110691PubMedCrossRef Kim JW, Kuk MU, Choy HE, Park SC, Park JT (2019) Mitochondrial metabolic reprograming via BRAF inhibition ameliorates senescence. Exp Gerontol 126:110691PubMedCrossRef
54.
go back to reference Sato Y, Takahashi M, Yanagita M (2020) Pathophysiology of AKI to CKD progression. Semin Nephrol 40:206–215PubMedCrossRef Sato Y, Takahashi M, Yanagita M (2020) Pathophysiology of AKI to CKD progression. Semin Nephrol 40:206–215PubMedCrossRef
55.
go back to reference Harzandi A, Lee S, Bidkhori G, Saha S et al (2021) Acute kidney injury leading to CKD is associated with a persistence of metabolic dysfunction and hypertriglyceridemia. iScience 24:102046PubMedPubMedCentralCrossRef Harzandi A, Lee S, Bidkhori G, Saha S et al (2021) Acute kidney injury leading to CKD is associated with a persistence of metabolic dysfunction and hypertriglyceridemia. iScience 24:102046PubMedPubMedCentralCrossRef
56.
go back to reference Simon N, Hertig A (2015) Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front Med (Lausanne) 2:52 Simon N, Hertig A (2015) Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front Med (Lausanne) 2:52
57.
go back to reference Hertig A, Verine J, Mougenot B, Jouanneau C, Ouali N, Sebe P et al (2006) Risk factors for early epithelial to mesenchymal transition in renal grafts. Am J Transplant 6(12):2937–2946PubMedCrossRef Hertig A, Verine J, Mougenot B, Jouanneau C, Ouali N, Sebe P et al (2006) Risk factors for early epithelial to mesenchymal transition in renal grafts. Am J Transplant 6(12):2937–2946PubMedCrossRef
58.
go back to reference Bonventre JV (2014) Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney Int Suppl 4:39–44CrossRef Bonventre JV (2014) Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney Int Suppl 4:39–44CrossRef
59.
go back to reference Abouelkheir M, Shabaan DA, Shahien MA (2021) Delayed blockage of prostaglandin EP4 receptors can reduce dedifferentiation, epithelial-to-mesenchymal transition and fibrosis following acute kidney injury. Clin Exp Pharmacol Physiol 48:791–800PubMedCrossRef Abouelkheir M, Shabaan DA, Shahien MA (2021) Delayed blockage of prostaglandin EP4 receptors can reduce dedifferentiation, epithelial-to-mesenchymal transition and fibrosis following acute kidney injury. Clin Exp Pharmacol Physiol 48:791–800PubMedCrossRef
60.
go back to reference Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427PubMedCrossRef Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427PubMedCrossRef
61.
go back to reference Stahl AL, Johansson K, Mossberg M, Kahn R, Karpman D (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34:11–30PubMedCrossRef Stahl AL, Johansson K, Mossberg M, Kahn R, Karpman D (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34:11–30PubMedCrossRef
62.
go back to reference Vogetseder A, Karadeniz A, Kaissling B, Le Hir M (2005) Tubular cell proliferation in the healthy rat kidney. Histochem Cell Biol 124:97–104PubMedCrossRef Vogetseder A, Karadeniz A, Kaissling B, Le Hir M (2005) Tubular cell proliferation in the healthy rat kidney. Histochem Cell Biol 124:97–104PubMedCrossRef
63.
go back to reference Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14(Suppl 1):S55-61PubMedCrossRef Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14(Suppl 1):S55-61PubMedCrossRef
64.
go back to reference Chang-Panesso M, Humphreys BD (2017) Cellular plasticity in kidney injury and repair. Nat Rev Nephrol 13:39–46PubMedCrossRef Chang-Panesso M, Humphreys BD (2017) Cellular plasticity in kidney injury and repair. Nat Rev Nephrol 13:39–46PubMedCrossRef
65.
go back to reference Valentijn FA, Falke LL, Nguyen TQ, Goldschmeding R (2018) Cellular senescence in the aging and diseased kidney. J Cell Commun Signal 12:69–82PubMedCrossRef Valentijn FA, Falke LL, Nguyen TQ, Goldschmeding R (2018) Cellular senescence in the aging and diseased kidney. J Cell Commun Signal 12:69–82PubMedCrossRef
67.
go back to reference Zhang H, Zhang X, Li X, Meng WB, Bai ZT, Rui SZ et al (2018) Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 234:619–631PubMedCrossRef Zhang H, Zhang X, Li X, Meng WB, Bai ZT, Rui SZ et al (2018) Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 234:619–631PubMedCrossRef
68.
go back to reference De Chiara L, Conte C, Antonelli G, Lazzeri E (2021) Tubular cell cycle response upon AKI: revising old and new paradigms to identify novel targets for CKD prevention. Int J Mol Sci 22:11093PubMedPubMedCentralCrossRef De Chiara L, Conte C, Antonelli G, Lazzeri E (2021) Tubular cell cycle response upon AKI: revising old and new paradigms to identify novel targets for CKD prevention. Int J Mol Sci 22:11093PubMedPubMedCentralCrossRef
69.
go back to reference Liu H, Huang B, Xue S, U KP, Tsang LL, Zhang X et al (2020) Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs. Stem Cell Res Ther 11: 279 Liu H, Huang B, Xue S, U KP, Tsang LL, Zhang X et al (2020) Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs. Stem Cell Res Ther 11: 279
70.
go back to reference Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52:7–18PubMedCrossRef Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52:7–18PubMedCrossRef
72.
go back to reference Kellum JA, Chawla LS (2016) Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant 31:16–22PubMedCrossRef Kellum JA, Chawla LS (2016) Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant 31:16–22PubMedCrossRef
73.
go back to reference Kishi S, Brooks CR, Taguchi K, Ichimura T et al (2019) Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. J Clin Invest 129:4797–4816PubMedPubMedCentralCrossRef Kishi S, Brooks CR, Taguchi K, Ichimura T et al (2019) Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. J Clin Invest 129:4797–4816PubMedPubMedCentralCrossRef
77.
go back to reference Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S et al (2019) Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci Transl Med 11:eaav4754PubMedPubMedCentralCrossRef Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S et al (2019) Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci Transl Med 11:eaav4754PubMedPubMedCentralCrossRef
78.
go back to reference Kim DH, Choi HI, Park JS, Kim CS, Bae EH, Ma SK et al (2019) Src-mediated crosstalk between FXR and YAP protects against renal fibrosis. FASEB J 33:11109–11122PubMedCrossRef Kim DH, Choi HI, Park JS, Kim CS, Bae EH, Ma SK et al (2019) Src-mediated crosstalk between FXR and YAP protects against renal fibrosis. FASEB J 33:11109–11122PubMedCrossRef
79.
go back to reference Jin H, Zhang Y, Liu D, Wang SS et al (2020) Innate immune signaling contributes to tubular cell senescence in the Glis2 knockout mouse model of nephronophthisis. Am J Pathol 190:176–189PubMedPubMedCentralCrossRef Jin H, Zhang Y, Liu D, Wang SS et al (2020) Innate immune signaling contributes to tubular cell senescence in the Glis2 knockout mouse model of nephronophthisis. Am J Pathol 190:176–189PubMedPubMedCentralCrossRef
80.
go back to reference Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N (2012) Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol 303:F1641-1651PubMedPubMedCentralCrossRef Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N (2012) Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol 303:F1641-1651PubMedPubMedCentralCrossRef
81.
go back to reference Crepin T, Legendre M, Carron C, Vachey C, Courivaud C, Rebibou JM et al (2020) Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol Dial Transplant 35:624–632PubMedCrossRef Crepin T, Legendre M, Carron C, Vachey C, Courivaud C, Rebibou JM et al (2020) Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol Dial Transplant 35:624–632PubMedCrossRef
84.
go back to reference Zhang F, Wan X, Cao YZ, Sun D, Cao CC (2018) Klotho gene-modified BMSCs showed elevated antifibrotic effects by inhibiting the Wnt/beta-catenin pathway in kidneys after acute injury. Cell Biol Int 42:1670–1679PubMedCrossRef Zhang F, Wan X, Cao YZ, Sun D, Cao CC (2018) Klotho gene-modified BMSCs showed elevated antifibrotic effects by inhibiting the Wnt/beta-catenin pathway in kidneys after acute injury. Cell Biol Int 42:1670–1679PubMedCrossRef
85.
go back to reference Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V, Stefanidis I (2021) The role of indoleamine 2,3-dioxygenase in renal tubular epithelial cells senescence under anoxia or reoxygenation. Biomolecules 11:1522PubMedPubMedCentralCrossRef Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V, Stefanidis I (2021) The role of indoleamine 2,3-dioxygenase in renal tubular epithelial cells senescence under anoxia or reoxygenation. Biomolecules 11:1522PubMedPubMedCentralCrossRef
86.
87.
go back to reference Chen CJ, Qiu RZ, Yang J, Zhang Q, Sun GL, Gao XF et al (2021) Lipoxin A4 Restores septic renal function via blocking crosstalk between inflammation and premature senescence. Front Immunol 12:637753PubMedPubMedCentralCrossRef Chen CJ, Qiu RZ, Yang J, Zhang Q, Sun GL, Gao XF et al (2021) Lipoxin A4 Restores septic renal function via blocking crosstalk between inflammation and premature senescence. Front Immunol 12:637753PubMedPubMedCentralCrossRef
88.
go back to reference Jia Y, Kang X, Tan L, Ren Y, Qu L, Tang J, Liu G, Wang S, Xiong Z, Yang L (2021) Nicotinamide mononucleotide attenuates renal interstitial fibrosis after AKI by suppressing tubular DNA damage and senescence. Front Physiol 12:649547PubMedPubMedCentralCrossRef Jia Y, Kang X, Tan L, Ren Y, Qu L, Tang J, Liu G, Wang S, Xiong Z, Yang L (2021) Nicotinamide mononucleotide attenuates renal interstitial fibrosis after AKI by suppressing tubular DNA damage and senescence. Front Physiol 12:649547PubMedPubMedCentralCrossRef
89.
go back to reference Price PM, Yu F, Kaldis P, Aleem E, Nowak G, Safirstein RL et al (2006) Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol 17:2434–2442PubMedCrossRef Price PM, Yu F, Kaldis P, Aleem E, Nowak G, Safirstein RL et al (2006) Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol 17:2434–2442PubMedCrossRef
90.
go back to reference DiRocco DP, Bisi J, Roberts P, Strum J, Wong KK, Sharpless N et al (2014) CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am J Physiol Renal Physiol 306:F379-388PubMedCrossRef DiRocco DP, Bisi J, Roberts P, Strum J, Wong KK, Sharpless N et al (2014) CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am J Physiol Renal Physiol 306:F379-388PubMedCrossRef
91.
go back to reference Xiang CY, Yan Y, Zhang DG (2021) Alleviation of the doxorubicin-induced nephrotoxicity by fasudil in vivo and in vitro. J Pharmacol Sci 145:6–15PubMedCrossRef Xiang CY, Yan Y, Zhang DG (2021) Alleviation of the doxorubicin-induced nephrotoxicity by fasudil in vivo and in vitro. J Pharmacol Sci 145:6–15PubMedCrossRef
92.
go back to reference Song AN, Zhang C, Meng XF (2021) Mechanism and application of metformin in kidney diseases: an update. Biomed Pharmacother 138:111454PubMedCrossRef Song AN, Zhang C, Meng XF (2021) Mechanism and application of metformin in kidney diseases: an update. Biomed Pharmacother 138:111454PubMedCrossRef
Metadata
Title
Cellular senescence and acute kidney injury
Authors
Xiaoxi Lin
Heng Jin
Yanfen Chai
Songtao Shou
Publication date
26-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 12/2022
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-022-05532-2

Other articles of this Issue 12/2022

Pediatric Nephrology 12/2022 Go to the issue