Skip to main content
Top
Published in: Pediatric Nephrology 6/2021

01-06-2021 | Coronavirus | Educational Review

2020 update on the renin–angiotensin–aldosterone system in pediatric kidney disease and its interactions with coronavirus

Authors: Ana Cristina Simões e Silva, Katharina Lanza, Vitória Andrade Palmeira, Larissa Braga Costa, Joseph T. Flynn

Published in: Pediatric Nephrology | Issue 6/2021

Login to get access

Abstract

The last decade was crucial for our understanding of the renin–angiotensin–aldosterone system (RAAS) as a two-axis, counter-regulatory system, divided into the classical axis, formed by angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and the angiotensin type 1 receptor (AT1R), and the alternative axis comprising angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) (Ang-(1-7)), and the Mas receptor. Breakthrough discoveries also took place, with other RAAS endopeptides being described, including alamandine and angiotensin A. In this review, we characterize the two RAAS axes and the role of their components in pediatric kidney diseases, including childhood hypertension (HTN), pediatric glomerular diseases, congenital abnormalities of the kidney and urinary tract (CAKUT), and chronic kidney disease (CKD). We also present recent findings on potential interactions between the novel coronavirus, SARS-CoV-2, and components of the RAAS, as well as potential implications of coronavirus disease 2019 (COVID-19) for pediatric kidney diseases.
Literature
1.
go back to reference Simões e Silva AC, Teixeira MM (2016) ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 107:154–162PubMed Simões e Silva AC, Teixeira MM (2016) ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 107:154–162PubMed
2.
go back to reference Basso N, Terragno NA (2001) History about the discovery of the renin-angiotensin system. Hypertension 38:1246–1249PubMed Basso N, Terragno NA (2001) History about the discovery of the renin-angiotensin system. Hypertension 38:1246–1249PubMed
3.
go back to reference Streeten DH, Anderson GH, Freiberg JM, Dalakos TG (1975) Use of an angiotensin II antagonist (saralasin) in the recognition of “angiotensinogenic” hypertension. N Engl J Med 292:657–662PubMed Streeten DH, Anderson GH, Freiberg JM, Dalakos TG (1975) Use of an angiotensin II antagonist (saralasin) in the recognition of “angiotensinogenic” hypertension. N Engl J Med 292:657–662PubMed
4.
go back to reference Simões e Silva AC, Flynn JT (2012) The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol 27:1835–1845PubMed Simões e Silva AC, Flynn JT (2012) The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol 27:1835–1845PubMed
5.
go back to reference Santos RA, Ferreira AJ, Simoes e Silva AC (2008) Angiotenisins. In: Bader M (ed) Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics, 1st edn. Wiley, New York, pp 67–100 Santos RA, Ferreira AJ, Simoes e Silva AC (2008) Angiotenisins. In: Bader M (ed) Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics, 1st edn. Wiley, New York, pp 67–100
6.
go back to reference Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, Ferrario CM (1988) Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension 11(2 Pt 2):I153–I157PubMed Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, Ferrario CM (1988) Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension 11(2 Pt 2):I153–I157PubMed
7.
go back to reference Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM (1988) Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A 85:4095–4098PubMedPubMedCentral Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM (1988) Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A 85:4095–4098PubMedPubMedCentral
8.
go back to reference Campagnole-Santos MJ, Diz DI, Santos RA, Khosla MC, Brosnihan KB, Ferrario CM (1989) Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys 257(1 Pt 2):H324–H329 Campagnole-Santos MJ, Diz DI, Santos RA, Khosla MC, Brosnihan KB, Ferrario CM (1989) Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys 257(1 Pt 2):H324–H329
9.
go back to reference Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243PubMed Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243PubMed
10.
go back to reference Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9PubMed Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9PubMed
11.
12.
go back to reference Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simões e Silva AC (2017) The Anti-inflammatory potential of ACE2/angiotensin-(1-7)/Mas receptor axis: evidence from basic and clinical research. Curr Drug Targets 18:1301–1313PubMed Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simões e Silva AC (2017) The Anti-inflammatory potential of ACE2/angiotensin-(1-7)/Mas receptor axis: evidence from basic and clinical research. Curr Drug Targets 18:1301–1313PubMed
14.
go back to reference Patel S, Rauf A, Khan H, Abu-Izneid T (2017) Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 94:317–325PubMed Patel S, Rauf A, Khan H, Abu-Izneid T (2017) Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 94:317–325PubMed
15.
go back to reference Cassis LA, Saye J, Peach MJ (1988) Location and regulation of rat angiotensinogen messenger RNA. Hypertension 11(6 Pt 2):591–596PubMed Cassis LA, Saye J, Peach MJ (1988) Location and regulation of rat angiotensinogen messenger RNA. Hypertension 11(6 Pt 2):591–596PubMed
16.
go back to reference Hilgenfeldt U (1988) Half-life of rat angiotensinogen: influence of nephrectomy and lipopolysaccharide stimulation. Mol Cell Endocrinol 56:91–98PubMed Hilgenfeldt U (1988) Half-life of rat angiotensinogen: influence of nephrectomy and lipopolysaccharide stimulation. Mol Cell Endocrinol 56:91–98PubMed
17.
go back to reference Campbell DJ (2012) Angiotensin II generation in vivo: does it involve enzymes other than renin and angiotensin-converting enzyme? J Renin Angiotensin Aldosterone Syst 13:314–316PubMed Campbell DJ (2012) Angiotensin II generation in vivo: does it involve enzymes other than renin and angiotensin-converting enzyme? J Renin Angiotensin Aldosterone Syst 13:314–316PubMed
18.
go back to reference Bock HA, Hermle M, Brunner FP, Thiel G (1992) Pressure dependent modulation of renin release in isolated perfused glomeruli. Kidney Int 41:275–280PubMed Bock HA, Hermle M, Brunner FP, Thiel G (1992) Pressure dependent modulation of renin release in isolated perfused glomeruli. Kidney Int 41:275–280PubMed
19.
go back to reference Li XC, Cook JL, Rubera I, Tauc M, Zhang F, Zhuo JL (2011) Intrarenal transfer of an intracellular fluorescent fusion of angiotensin II selectively in proximal tubules increases blood pressure in rats and mice. Am J Physiol Ren Physiol 300:F1076–F1088 Li XC, Cook JL, Rubera I, Tauc M, Zhang F, Zhuo JL (2011) Intrarenal transfer of an intracellular fluorescent fusion of angiotensin II selectively in proximal tubules increases blood pressure in rats and mice. Am J Physiol Ren Physiol 300:F1076–F1088
20.
go back to reference Celerier J, Cruz A, Lamande N, Gasc JM, Corvol P (2002) Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 39:224–228PubMed Celerier J, Cruz A, Lamande N, Gasc JM, Corvol P (2002) Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 39:224–228PubMed
21.
go back to reference Ehlers MR, Fox EA, Strydom DJ, Riordan JF (1989) Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A 86:7741–7745PubMedPubMedCentral Ehlers MR, Fox EA, Strydom DJ, Riordan JF (1989) Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A 86:7741–7745PubMedPubMedCentral
22.
go back to reference Beldent V, Michaud A, Wei L, Chauvet MT, Corvol P (1993) Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem 268:26428–26434PubMed Beldent V, Michaud A, Wei L, Chauvet MT, Corvol P (1993) Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem 268:26428–26434PubMed
23.
go back to reference Margolius HS (1996) Kallikreins and kinins. Molecular characteristics and cellular and tissue responses. Diabetes 45(Suppl 1):S14–S19PubMed Margolius HS (1996) Kallikreins and kinins. Molecular characteristics and cellular and tissue responses. Diabetes 45(Suppl 1):S14–S19PubMed
24.
go back to reference Husain A, Graham RM (2000) Drugs, enzymes and receptors of the renin-angiotensin system: celebrating a century of discovery. Harwood Academic Publishers, Sydney Husain A, Graham RM (2000) Drugs, enzymes and receptors of the renin-angiotensin system: celebrating a century of discovery. Harwood Academic Publishers, Sydney
25.
go back to reference Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236PubMed Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236PubMed
26.
go back to reference Konishi H, Kuroda S, Inada Y, Fujisawa Y (1994) Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem Biophys Res Commun 199:467–474PubMed Konishi H, Kuroda S, Inada Y, Fujisawa Y (1994) Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem Biophys Res Commun 199:467–474PubMed
27.
go back to reference Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251PubMed Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251PubMed
28.
go back to reference De Gasparo M, Catt K, Inagami T, Wright J, Unger T (2000) International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472PubMed De Gasparo M, Catt K, Inagami T, Wright J, Unger T (2000) International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472PubMed
29.
go back to reference Shenoy SK, Lefkowitz RJ (2005) Angiotensin II-stimulated signaling through G proteins and beta-arrestin. Sci STKE 2005(311):cm14PubMed Shenoy SK, Lefkowitz RJ (2005) Angiotensin II-stimulated signaling through G proteins and beta-arrestin. Sci STKE 2005(311):cm14PubMed
30.
go back to reference Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896PubMed Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896PubMed
31.
go back to reference Qadri F, Culman J, Veltmar A, Maas K, Rascher W, Unger T (1993) Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. J Pharmacol Exp Ther 267:567–574PubMed Qadri F, Culman J, Veltmar A, Maas K, Rascher W, Unger T (1993) Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. J Pharmacol Exp Ther 267:567–574PubMed
32.
go back to reference Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM (1998) Converting enzyme determines plasma clearance of angiotensin-(1–7). Hypertension 32:496–502PubMed Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM (1998) Converting enzyme determines plasma clearance of angiotensin-(1–7). Hypertension 32:496–502PubMed
33.
go back to reference Nguyen MTX, Han J, Ralph DL, Veiras LC, McDonough AA (2015) Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Phys Rep 3:e12496 Nguyen MTX, Han J, Ralph DL, Veiras LC, McDonough AA (2015) Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Phys Rep 3:e12496
34.
go back to reference Yang T, Xu C (2017) Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol 28:1040–1049PubMedPubMedCentral Yang T, Xu C (2017) Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol 28:1040–1049PubMedPubMedCentral
35.
go back to reference Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 98:1627–1738PubMedPubMedCentral Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 98:1627–1738PubMedPubMedCentral
36.
go back to reference Takayanagi T, Forrester SJ, Kawai T, Obama T, Tsuji T, Elliott KJ, Nuti E, Rossello A, Kwok HF, Scalia R, Rizzo V, Eguchi S (2016) Vascular ADAM17 as a novel therapeutic target in mediating cardiovascular hypertrophy and perivascular fibrosis induced by angiotensin II. Hypertension 68:949–955PubMed Takayanagi T, Forrester SJ, Kawai T, Obama T, Tsuji T, Elliott KJ, Nuti E, Rossello A, Kwok HF, Scalia R, Rizzo V, Eguchi S (2016) Vascular ADAM17 as a novel therapeutic target in mediating cardiovascular hypertrophy and perivascular fibrosis induced by angiotensin II. Hypertension 68:949–955PubMed
38.
go back to reference Zhang M, Prosser BL, Bamboye MA, Gondim ANS, Santos CX, Martin D, Ghigo A, Perino A, Brewer AC, Ward CW, Hirsch E, Lederer WJ, Shah AM (2015) Contractile function during angiotensin-II activation: increased nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol 66:261–272PubMedPubMedCentral Zhang M, Prosser BL, Bamboye MA, Gondim ANS, Santos CX, Martin D, Ghigo A, Perino A, Brewer AC, Ward CW, Hirsch E, Lederer WJ, Shah AM (2015) Contractile function during angiotensin-II activation: increased nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol 66:261–272PubMedPubMedCentral
39.
go back to reference Healey JS, Baranchuk A, Crystal E, Morillo CA, Garfinkle M, Yusuf S, Connolly SJ (2005) Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 45:1832–1839PubMed Healey JS, Baranchuk A, Crystal E, Morillo CA, Garfinkle M, Yusuf S, Connolly SJ (2005) Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 45:1832–1839PubMed
41.
42.
go back to reference Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR, Fulton WB, Kovler ML, Wang S, Prindle T Jr, Zhang Y, Lazartigues ED, Holtzman MJ, Alcorn JF, Hackam DJ, Jia H (2019) a dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to pseudomonas aeruginosa lung infection in mice. J Immunol 203:3000–3012PubMed Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR, Fulton WB, Kovler ML, Wang S, Prindle T Jr, Zhang Y, Lazartigues ED, Holtzman MJ, Alcorn JF, Hackam DJ, Jia H (2019) a dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to pseudomonas aeruginosa lung infection in mice. J Immunol 203:3000–3012PubMed
43.
go back to reference Wang J, Chen L, Chen B, Meliton A, Liu SQ, Shi Y, Liu T, Deb DK, Solway J, Li YC (2015) Chronic activation of the renin-angiotensin system induces lung fibrosis. Sci Rep 5:15561PubMedPubMedCentral Wang J, Chen L, Chen B, Meliton A, Liu SQ, Shi Y, Liu T, Deb DK, Solway J, Li YC (2015) Chronic activation of the renin-angiotensin system induces lung fibrosis. Sci Rep 5:15561PubMedPubMedCentral
44.
go back to reference Rocha NP, Simões e Silva AC, Rodrigues Prestes TR, Feracin V, Machado CA, Ferreira RN, Teixeira AL, Miranda AS (2018) RAS in the central nervous system: potential role in neuropsychiatric disorders. Curr Med Chem 25:3333–3352PubMed Rocha NP, Simões e Silva AC, Rodrigues Prestes TR, Feracin V, Machado CA, Ferreira RN, Teixeira AL, Miranda AS (2018) RAS in the central nervous system: potential role in neuropsychiatric disorders. Curr Med Chem 25:3333–3352PubMed
45.
go back to reference Saavedra JM (2005) Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 25:485–512PubMed Saavedra JM (2005) Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 25:485–512PubMed
46.
go back to reference Kalupahana NS, Massiera F, Quignard-Boulange A, Ailhaud G, Voy BH, Wasserman DH, Moustaid-Moussa N (2012) Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity 20:48–56PubMed Kalupahana NS, Massiera F, Quignard-Boulange A, Ailhaud G, Voy BH, Wasserman DH, Moustaid-Moussa N (2012) Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity 20:48–56PubMed
47.
go back to reference Massiera F, Seydoux J, Geloen A, Quignard-Boulange A, Turban S, Saint-Marc P, Fukamizu A, Negrel R, Ailhaud G, Teboul M (2001) Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology 142:5220–5225PubMed Massiera F, Seydoux J, Geloen A, Quignard-Boulange A, Turban S, Saint-Marc P, Fukamizu A, Negrel R, Ailhaud G, Teboul M (2001) Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology 142:5220–5225PubMed
49.
go back to reference Simões e Silva AC, Miranda AS, Rocha NP, Teixeira AL (2017) Renin angiotensin system in liver diseases: friend or foe? World J Gastroenterol 23:3396–3406PubMedPubMedCentral Simões e Silva AC, Miranda AS, Rocha NP, Teixeira AL (2017) Renin angiotensin system in liver diseases: friend or foe? World J Gastroenterol 23:3396–3406PubMedPubMedCentral
50.
go back to reference Vilas-Boas WW, Ribeiro-Oliveira A, Pereira RM, Ribeiro CR, Almeida J, Nadu AP, Simões e Silva AC, Santos RA (2009) Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis. World J Gastroenterol 15:2512–2519PubMedPubMedCentral Vilas-Boas WW, Ribeiro-Oliveira A, Pereira RM, Ribeiro CR, Almeida J, Nadu AP, Simões e Silva AC, Santos RA (2009) Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis. World J Gastroenterol 15:2512–2519PubMedPubMedCentral
51.
go back to reference Pereira RM, Santos RA, Teixeira MM, Leite VH, Costa LP, Costa Dias FL, Barcelos LS, Collares GB, Simões e Silva AC (2007) The renin-angiotensin system in a rat model of hepatic fibrosis: evidence for a protective role of angiotensin-(1-7). J Hepatol 46:674–681PubMed Pereira RM, Santos RA, Teixeira MM, Leite VH, Costa LP, Costa Dias FL, Barcelos LS, Collares GB, Simões e Silva AC (2007) The renin-angiotensin system in a rat model of hepatic fibrosis: evidence for a protective role of angiotensin-(1-7). J Hepatol 46:674–681PubMed
52.
go back to reference Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z, Lew RA, Smith AI, Burrell LM, Angus PW (2007) Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis. J Hepatol 47:387–395PubMedPubMedCentral Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z, Lew RA, Smith AI, Burrell LM, Angus PW (2007) Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis. J Hepatol 47:387–395PubMedPubMedCentral
53.
go back to reference Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K, Zhang C (2014) Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol 11:413–426PubMedPubMedCentral Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K, Zhang C (2014) Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol 11:413–426PubMedPubMedCentral
54.
go back to reference Domenig O, Manzel A, Grobe N, Konigshausen E, Kaltenecker CC, Kovarik JJ, Stegbauer J, Gurley SB, van Oyen D, Antlanger M, Bader M, Motta-Santos D, Santos RA, Elased KM, Saemann MD, Linker RA, Poglitsch M (2016) Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep 6:33678PubMedPubMedCentral Domenig O, Manzel A, Grobe N, Konigshausen E, Kaltenecker CC, Kovarik JJ, Stegbauer J, Gurley SB, van Oyen D, Antlanger M, Bader M, Motta-Santos D, Santos RA, Elased KM, Saemann MD, Linker RA, Poglitsch M (2016) Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep 6:33678PubMedPubMedCentral
55.
go back to reference Westwood BM, Chappell MC (2012) Divergent pathways for the angiotensin-(1-12) metabolism in the rat circulation and kidney. Peptides 35:190–195PubMedPubMedCentral Westwood BM, Chappell MC (2012) Divergent pathways for the angiotensin-(1-12) metabolism in the rat circulation and kidney. Peptides 35:190–195PubMedPubMedCentral
56.
go back to reference Myohanen TT, Garcia-Horsman JA, Tenorio-Laranga J, Mannisto PT (2009) Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem 57:831–848PubMedPubMedCentral Myohanen TT, Garcia-Horsman JA, Tenorio-Laranga J, Mannisto PT (2009) Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem 57:831–848PubMedPubMedCentral
58.
go back to reference Zohn IE, Symons M, Chrzanowska-Wodnicka M, Westwick JK, Der CJ (1998) Mas oncogene signaling and transformation require the small GTP-binding protein Rac. Mol Cell Biol 18:1225–1235PubMedPubMedCentral Zohn IE, Symons M, Chrzanowska-Wodnicka M, Westwick JK, Der CJ (1998) Mas oncogene signaling and transformation require the small GTP-binding protein Rac. Mol Cell Biol 18:1225–1235PubMedPubMedCentral
59.
go back to reference Alenina N, Bader M, Walther T (2002) Imprinting of the murine MAS protooncogene is restricted to its antisense RNA. Biochem Biophys Res Commun 290:1072–1078PubMed Alenina N, Bader M, Walther T (2002) Imprinting of the murine MAS protooncogene is restricted to its antisense RNA. Biochem Biophys Res Commun 290:1072–1078PubMed
60.
go back to reference Santos SHS (2019) Angiotensin-(1-7): role in the endocrine system. In: Santos RAS (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, pp 153–168 Santos SHS (2019) Angiotensin-(1-7): role in the endocrine system. In: Santos RAS (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, pp 153–168
61.
go back to reference Simões e Silva AC, Santos RA (2019) Kidney. In: Santos RA (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, Cham, pp 117–130 Simões e Silva AC, Santos RA (2019) Kidney. In: Santos RA (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, Cham, pp 117–130
62.
go back to reference Vijayaraghavan K, Deedwania P (2011) Renin-angiotensin-aldosterone blockade for cardiovascular disease prevention. Cardiol Clin 29:137–156PubMed Vijayaraghavan K, Deedwania P (2011) Renin-angiotensin-aldosterone blockade for cardiovascular disease prevention. Cardiol Clin 29:137–156PubMed
63.
go back to reference Ferreira AJ, Castro CH, Santos RA (2019) Heart–coronary vessels and cardiomyocytes. In: Santos RAS (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, pp 73–81 Ferreira AJ, Castro CH, Santos RA (2019) Heart–coronary vessels and cardiomyocytes. In: Santos RAS (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, pp 73–81
64.
go back to reference Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Diez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ (2010) The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 182:1065–1072PubMedPubMedCentral Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Diez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ (2010) The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 182:1065–1072PubMedPubMedCentral
65.
go back to reference Magalhaes GS, Barroso LC, Reis AC, Rodrigues-Machado MG, Gregorio JF, Motta-Santos D, Oliveira AC, Perez DA, Barcelos LS, Teixeira MM, Santos RA, Pinho V, Campagnole-Santos MJ (2018) Angiotensin-(1-7) promotes resolution of eosinophilic inflammation in an experimental model of asthma. Front Immunol 9:58PubMedPubMedCentral Magalhaes GS, Barroso LC, Reis AC, Rodrigues-Machado MG, Gregorio JF, Motta-Santos D, Oliveira AC, Perez DA, Barcelos LS, Teixeira MM, Santos RA, Pinho V, Campagnole-Santos MJ (2018) Angiotensin-(1-7) promotes resolution of eosinophilic inflammation in an experimental model of asthma. Front Immunol 9:58PubMedPubMedCentral
66.
go back to reference Guimaraes PS, Santiago NM, Xavier CH, Velloso EP, Fontes MA, Santos RA, Campagnole-Santos MJ (2012) Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. Am J Physiol Heart Circ Physiol 303:H393–H400PubMed Guimaraes PS, Santiago NM, Xavier CH, Velloso EP, Fontes MA, Santos RA, Campagnole-Santos MJ (2012) Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. Am J Physiol Heart Circ Physiol 303:H393–H400PubMed
67.
go back to reference Campagnole-Santos MJ, Gironacci MM, Fontes MA (2019) Brain. In: Santos RA (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, Cham, pp 55–71 Campagnole-Santos MJ, Gironacci MM, Fontes MA (2019) Brain. In: Santos RA (ed) Angiotensin-(1-7): a comprehensive review. Springer International Publishing, Cham, pp 55–71
68.
go back to reference Guimaraes PS, Oliveira MF, Braga JF, Nadu AP, Schreihofer A, Santos RA, Campagnole-Santos MJ (2014) Increasing angiotensin-(1–7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats. Hypertension 63:1078–1085PubMed Guimaraes PS, Oliveira MF, Braga JF, Nadu AP, Schreihofer A, Santos RA, Campagnole-Santos MJ (2014) Increasing angiotensin-(1–7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats. Hypertension 63:1078–1085PubMed
69.
go back to reference Mecca AP, Regenhardt RW, O'Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C (2011) Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol 96:1084–1096PubMedPubMedCentral Mecca AP, Regenhardt RW, O'Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C (2011) Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol 96:1084–1096PubMedPubMedCentral
70.
go back to reference Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RA (2008) Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57:340–347PubMed Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RA (2008) Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57:340–347PubMed
71.
go back to reference Schön M, Kovaničová Z, Košutzká Z, Nemec M, Tomková M, Jacková L, Máderová D, Slobodová L, Valkovič P, Ukropec J (2019) Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals. Sci Rep 9:1–11 Schön M, Kovaničová Z, Košutzká Z, Nemec M, Tomková M, Jacková L, Máderová D, Slobodová L, Valkovič P, Ukropec J (2019) Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals. Sci Rep 9:1–11
72.
go back to reference Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, Sousa F, Alzamora A, Soares E, Barbosa C, Kjeldsen F, Oliveira A, Braga J, Savergnini S, Maia G, Peluso AB, Passos-Silva D, Ferreira A, Alves F, Martins A, Raizada M, Paula R, Motta-Santos D, Klempin F, Pimenta A, Alenina N, Sinisterra R, Bader M, Campagnole-Santos MJ, Santos RA (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112:1104–1111PubMed Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, Sousa F, Alzamora A, Soares E, Barbosa C, Kjeldsen F, Oliveira A, Braga J, Savergnini S, Maia G, Peluso AB, Passos-Silva D, Ferreira A, Alves F, Martins A, Raizada M, Paula R, Motta-Santos D, Klempin F, Pimenta A, Alenina N, Sinisterra R, Bader M, Campagnole-Santos MJ, Santos RA (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112:1104–1111PubMed
74.
go back to reference Schleifenbaum J (2019) Alamandine and its receptor MrgD pair up to join the protective arm of the renin-angiotensin system. Front Med 6:107 Schleifenbaum J (2019) Alamandine and its receptor MrgD pair up to join the protective arm of the renin-angiotensin system. Front Med 6:107
75.
go back to reference Jesus ICG, Scalzo S, Alves F, Marques K, Rocha-Resende C, Bader M, Santos RA, Guatimosim S (2018) Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am J Phys Cell Phys 314:C702–C711 Jesus ICG, Scalzo S, Alves F, Marques K, Rocha-Resende C, Bader M, Santos RA, Guatimosim S (2018) Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am J Phys Cell Phys 314:C702–C711
76.
go back to reference Yugandhar VG, Clark MA (2013) Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 46:26–32PubMed Yugandhar VG, Clark MA (2013) Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 46:26–32PubMed
77.
go back to reference Park BM, Cha SA, Lee SH, Kim SH (2016) Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides 79:66–74PubMed Park BM, Cha SA, Lee SH, Kim SH (2016) Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides 79:66–74PubMed
78.
go back to reference Martínez-Martos JM, del Pilar Carrera-González M, Dueñas B, Mayas MD, García MJ, Ramírez-Expósito MJ (2011) Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer. Breast 20:444–447PubMed Martínez-Martos JM, del Pilar Carrera-González M, Dueñas B, Mayas MD, García MJ, Ramírez-Expósito MJ (2011) Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer. Breast 20:444–447PubMed
79.
go back to reference Padia SH, Howell NL, Siragy HM, Carey RM (2006) Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension 47:537–544PubMed Padia SH, Howell NL, Siragy HM, Carey RM (2006) Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension 47:537–544PubMed
80.
go back to reference Wright JW, Krebs LT, Stobb JW, Harding JW (1995) The angiotensin IV system: functional implications. Front Neuroendocrinol 16:23–52PubMed Wright JW, Krebs LT, Stobb JW, Harding JW (1995) The angiotensin IV system: functional implications. Front Neuroendocrinol 16:23–52PubMed
81.
go back to reference Lochard N, Thibault G, Silversides DW, Touyz RM, Reudelhuber TL (2004) Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Circ Res 94:1451–1457PubMed Lochard N, Thibault G, Silversides DW, Touyz RM, Reudelhuber TL (2004) Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Circ Res 94:1451–1457PubMed
82.
go back to reference Vinh A, Widdop RE, Drummond GR, Gaspari TA (2008) Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovasc Res 77:178–187PubMed Vinh A, Widdop RE, Drummond GR, Gaspari TA (2008) Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovasc Res 77:178–187PubMed
83.
go back to reference Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276:48623–48626PubMed Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276:48623–48626PubMed
84.
go back to reference Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51PubMedPubMedCentral Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51PubMedPubMedCentral
85.
go back to reference Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C, Pinto M, Escudero N, Garcia L, Novoa U, Ayala P, Diaz-Araya G, Godoy I, Chiong M, Lavandero S, Jalil JE, Michea L (2014) Angiotensin-(1-9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J Hypertens 32:771–783PubMed Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C, Pinto M, Escudero N, Garcia L, Novoa U, Ayala P, Diaz-Araya G, Godoy I, Chiong M, Lavandero S, Jalil JE, Michea L (2014) Angiotensin-(1-9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J Hypertens 32:771–783PubMed
86.
go back to reference Sotomayor-Flores C, Rivera-Mejias P, Vasquez-Trincado C, Lopez-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, Garcia L, Roa JC, Rothermel BA, Maracaja-Coutinho V, Ho-Xuan H, Meister G, Chiong M, Ocaranza MP, Corvalan AH, Parra V, Lavandero S (2020) Angiotensin-(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ. https://doi.org/10.1038/s41418-020-0522-3 Sotomayor-Flores C, Rivera-Mejias P, Vasquez-Trincado C, Lopez-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, Garcia L, Roa JC, Rothermel BA, Maracaja-Coutinho V, Ho-Xuan H, Meister G, Chiong M, Ocaranza MP, Corvalan AH, Parra V, Lavandero S (2020) Angiotensin-(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ. https://​doi.​org/​10.​1038/​s41418-020-0522-3
87.
go back to reference Cha SA, Park BM, Kim SH (2018) Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. Korean J Physiol Pharmacol 22:447–456PubMedPubMedCentral Cha SA, Park BM, Kim SH (2018) Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. Korean J Physiol Pharmacol 22:447–456PubMedPubMedCentral
88.
go back to reference Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K (2006) Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun 350:1026–1031PubMed Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K (2006) Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun 350:1026–1031PubMed
89.
go back to reference Ahmad S, Varagic J, Groban L, Dell’Italia LJ, Nagata S, Kon ND, Ferrario CM (2014) Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 16:429PubMedPubMedCentral Ahmad S, Varagic J, Groban L, Dell’Italia LJ, Nagata S, Kon ND, Ferrario CM (2014) Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 16:429PubMedPubMedCentral
90.
go back to reference Jankowski V, Vanholder R, van der Giet M, Tolle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN, Tepel M, Schuchardt M, Schluter H, Wiedon A, Beyermann M, Bader M, Todiras M, Zidek W, Jankowski J (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302PubMed Jankowski V, Vanholder R, van der Giet M, Tolle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN, Tepel M, Schuchardt M, Schluter H, Wiedon A, Beyermann M, Bader M, Todiras M, Zidek W, Jankowski J (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302PubMed
91.
go back to reference Hrenak J, Paulis L, Simko F (2016) Angiotensin A/alamandine/MrgD axis: another clue to understanding cardiovascular pathophysiology. Int J Mol Sci 17:1098PubMedCentral Hrenak J, Paulis L, Simko F (2016) Angiotensin A/alamandine/MrgD axis: another clue to understanding cardiovascular pathophysiology. Int J Mol Sci 17:1098PubMedCentral
92.
go back to reference Simões e Silva AC, Diniz JS, Regueira Filho A, Santos RA (2004) The renin angiotensin system in childhood hypertension: selective increase of angiotensin-(1-7) in essential hypertension. J Pediatr 145:93–98PubMed Simões e Silva AC, Diniz JS, Regueira Filho A, Santos RA (2004) The renin angiotensin system in childhood hypertension: selective increase of angiotensin-(1-7) in essential hypertension. J Pediatr 145:93–98PubMed
93.
go back to reference Flynn J (2013) The changing face of pediatric hypertension in the era of the childhood obesity epidemic. Pediatr Nephrol 28:1059–1066PubMed Flynn J (2013) The changing face of pediatric hypertension in the era of the childhood obesity epidemic. Pediatr Nephrol 28:1059–1066PubMed
94.
go back to reference South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Shaltout HA, O’Shea TM, Washburn LK (2019) Obesity is associated with higher blood pressure and higher levels of angiotensin II but lower angiotensin-(1-7) in adolescents born preterm. J Pediatr 205:55–60PubMed South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Shaltout HA, O’Shea TM, Washburn LK (2019) Obesity is associated with higher blood pressure and higher levels of angiotensin II but lower angiotensin-(1-7) in adolescents born preterm. J Pediatr 205:55–60PubMed
95.
go back to reference Khatri M, Zitovsky J, Lee D, Nayyar K, Fazzari M, Grant C (2020) The association between serum chloride levels and chronic kidney disease progression: a cohort study. BMC Nephrol 21:165PubMedPubMedCentral Khatri M, Zitovsky J, Lee D, Nayyar K, Fazzari M, Grant C (2020) The association between serum chloride levels and chronic kidney disease progression: a cohort study. BMC Nephrol 21:165PubMedPubMedCentral
96.
go back to reference Burnier M (2020) Increasing potassium intake to prevent kidney damage: a new population strategy? Kidney Int 98:59–61PubMed Burnier M (2020) Increasing potassium intake to prevent kidney damage: a new population strategy? Kidney Int 98:59–61PubMed
97.
go back to reference South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC (2019) Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clin Sci 133:55–74 South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC (2019) Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clin Sci 133:55–74
98.
go back to reference Pinheiro SV, Ferreira AJ, Kitten GT, Silveira KD, da Silva DA, Santos SH, Gava E, Castro CH, Magalhaes JA, da Mota RK, Botelho-Santos GA, Bader M, Alenina N, Santos RA, Simões e Silva AC (2009) Genetic deletion of the angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int 75:1184–1193PubMed Pinheiro SV, Ferreira AJ, Kitten GT, Silveira KD, da Silva DA, Santos SH, Gava E, Castro CH, Magalhaes JA, da Mota RK, Botelho-Santos GA, Bader M, Alenina N, Santos RA, Simões e Silva AC (2009) Genetic deletion of the angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int 75:1184–1193PubMed
99.
go back to reference Silveira KD, Barroso LC, Vieira AT, Cisalpino D, Lima CX, Bader M, Arantes RM, Santos RA, Simões e Silva AC, Teixeira MM (2013) Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One 8:e66082PubMedPubMedCentral Silveira KD, Barroso LC, Vieira AT, Cisalpino D, Lima CX, Bader M, Arantes RM, Santos RA, Simões e Silva AC, Teixeira MM (2013) Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One 8:e66082PubMedPubMedCentral
100.
go back to reference Silva-Filha R, Pinheiro SV, Cordeiro TM, Feracin V, Vieira EL, Miranda AS, Simões e Silva AC (2019) Evidence for a role of angiotensin converting enzyme 2 in proteinuria of idiopathic nephrotic syndrome. Biosci Rep 39:BSR20181361 Silva-Filha R, Pinheiro SV, Cordeiro TM, Feracin V, Vieira EL, Miranda AS, Simões e Silva AC (2019) Evidence for a role of angiotensin converting enzyme 2 in proteinuria of idiopathic nephrotic syndrome. Biosci Rep 39:BSR20181361
101.
go back to reference Nadarajah R, Milagres R, Dilauro M, Gutsol A, Xiao F, Zimpelmann J, Kennedy C, Wysocki J, Batlle D, Burns KD (2012) Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int 82:292–303PubMedPubMedCentral Nadarajah R, Milagres R, Dilauro M, Gutsol A, Xiao F, Zimpelmann J, Kennedy C, Wysocki J, Batlle D, Burns KD (2012) Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int 82:292–303PubMedPubMedCentral
102.
go back to reference Ng HY, Yisireyili M, Saito S, Lee CT, Adelibieke Y, Nishijima F, Niwa T (2014) Indoxyl sulfate downregulates expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. PLoS One 9:e91517PubMedPubMedCentral Ng HY, Yisireyili M, Saito S, Lee CT, Adelibieke Y, Nishijima F, Niwa T (2014) Indoxyl sulfate downregulates expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. PLoS One 9:e91517PubMedPubMedCentral
103.
go back to reference Baum M (2010) Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Ren Physiol 298:F235–F247 Baum M (2010) Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Ren Physiol 298:F235–F247
104.
go back to reference Zhu Y, Zuo N, Li B, Xiong Y, Chen H, He H, Sun Z, Hu S, Cheng H, Ao Y, Wang H (2018) The expressional disorder of the renal RAS mediates nephrotic syndrome of male rat offspring induced by prenatal ethanol exposure. Toxicology 400:9–19PubMed Zhu Y, Zuo N, Li B, Xiong Y, Chen H, He H, Sun Z, Hu S, Cheng H, Ao Y, Wang H (2018) The expressional disorder of the renal RAS mediates nephrotic syndrome of male rat offspring induced by prenatal ethanol exposure. Toxicology 400:9–19PubMed
105.
go back to reference Simões e Silva AC, Valerio FC, Vasconcelos MA, Miranda DM, Oliveira EA (2013) Interactions between cytokines, congenital anomalies of kidney and urinary tract and chronic kidney disease. Clin Dev Immunol 2013:597920PubMedPubMedCentral Simões e Silva AC, Valerio FC, Vasconcelos MA, Miranda DM, Oliveira EA (2013) Interactions between cytokines, congenital anomalies of kidney and urinary tract and chronic kidney disease. Clin Dev Immunol 2013:597920PubMedPubMedCentral
106.
go back to reference Rocha NP, Bastos FM, Vieira ELM, Prestes TRR, Silveira KDD, Teixeira MM, Simões SAC (2019) The protective arm of the renin-angiotensin system may counteract the intense inflammatory process in fetuses with posterior urethral valves. J Pediatr 95:328–333 Rocha NP, Bastos FM, Vieira ELM, Prestes TRR, Silveira KDD, Teixeira MM, Simões SAC (2019) The protective arm of the renin-angiotensin system may counteract the intense inflammatory process in fetuses with posterior urethral valves. J Pediatr 95:328–333
107.
go back to reference Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, Warady BA (2008) Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension 52:631–637PubMed Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, Warady BA (2008) Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension 52:631–637PubMed
108.
go back to reference Shatat IF, Flynn JT (2005) Hypertension in children with chronic kidney disease. Adv Chronic Kidney Dis 12:378–384PubMed Shatat IF, Flynn JT (2005) Hypertension in children with chronic kidney disease. Adv Chronic Kidney Dis 12:378–384PubMed
109.
go back to reference Simões e Silva AC, Diniz JC, Pereira RM, Pinheiro SV, Santos RA (2006) Circulating renin angiotensin system in childhood chronic renal failure: marked increase of angiotensin-(1-7) in end-stage renal disease. Pediatr Res 60:734–739PubMed Simões e Silva AC, Diniz JC, Pereira RM, Pinheiro SV, Santos RA (2006) Circulating renin angiotensin system in childhood chronic renal failure: marked increase of angiotensin-(1-7) in end-stage renal disease. Pediatr Res 60:734–739PubMed
110.
go back to reference Sun CY, Chang SC, Wu MS (2012) Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 7:e34026PubMedPubMedCentral Sun CY, Chang SC, Wu MS (2012) Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 7:e34026PubMedPubMedCentral
111.
go back to reference Liu WC, Tomino Y, Lu KC (2018) impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of ast-120. Toxins (Basel) 10:367 Liu WC, Tomino Y, Lu KC (2018) impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of ast-120. Toxins (Basel) 10:367
112.
go back to reference Ma L, Han C, Peng T, Li N, Zhang B, Zhen X, Yang X (2016) Ang-(1-7) inhibited mitochondrial fission in high-glucose-induced podocytes by upregulation of miR-30a and downregulation of Drp1 and p53. J Chin Med Assoc 79:597–604PubMed Ma L, Han C, Peng T, Li N, Zhang B, Zhen X, Yang X (2016) Ang-(1-7) inhibited mitochondrial fission in high-glucose-induced podocytes by upregulation of miR-30a and downregulation of Drp1 and p53. J Chin Med Assoc 79:597–604PubMed
113.
go back to reference Ali Q, Patel S, Hussain T (2015) Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats. Am J Physiol Ren Physiol 308:F1379–F1385 Ali Q, Patel S, Hussain T (2015) Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats. Am J Physiol Ren Physiol 308:F1379–F1385
114.
go back to reference Basile DP, Anderson MD, Sutton TA (2011) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353 Basile DP, Anderson MD, Sutton TA (2011) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353
115.
go back to reference Barroso LC, Silveira KD, Lima CX, Borges V, Bader M, Rachid M, Santos RAS, Souza DG, Simões E, Silva AC, Teixeira MM (2012) Renoprotective effects of AVE0991, a nonpeptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertens 2012:808726PubMedPubMedCentral Barroso LC, Silveira KD, Lima CX, Borges V, Bader M, Rachid M, Santos RAS, Souza DG, Simões E, Silva AC, Teixeira MM (2012) Renoprotective effects of AVE0991, a nonpeptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertens 2012:808726PubMedPubMedCentral
116.
go back to reference Ribeiro-Oliveira A Jr, Nogueira AI, Pereira RM, Boas WWV, dos Santos RAS, Simões e Silva AC (2008) The renin–angiotensin system and diabetes: an update. Vasc Health Risk Manag 4:787–803PubMedPubMedCentral Ribeiro-Oliveira A Jr, Nogueira AI, Pereira RM, Boas WWV, dos Santos RAS, Simões e Silva AC (2008) The renin–angiotensin system and diabetes: an update. Vasc Health Risk Manag 4:787–803PubMedPubMedCentral
117.
go back to reference Alves MT, Chaves ACS, Almeida APM, Simões E, Silva AC, Araújo SA, Mota APL, Dos Mares-Guia TR, Fernandes AP, Gomes KB (2020) Anti-inflammatory effects of C-peptide on kidney of type 1 diabetes mellitus animal model. Mol Biol Rep 47:721–726PubMed Alves MT, Chaves ACS, Almeida APM, Simões E, Silva AC, Araújo SA, Mota APL, Dos Mares-Guia TR, Fernandes AP, Gomes KB (2020) Anti-inflammatory effects of C-peptide on kidney of type 1 diabetes mellitus animal model. Mol Biol Rep 47:721–726PubMed
118.
go back to reference Bangalore S, Fakheri R, Toklu B, Messerli FH (2016) Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ 352:i438PubMedPubMedCentral Bangalore S, Fakheri R, Toklu B, Messerli FH (2016) Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ 352:i438PubMedPubMedCentral
119.
go back to reference Mori J, Patel VB, Ramprasath T, Alrob OA, DesAulniers J, Scholey JW, Lopaschuk GD, Oudit GY (2014) Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Ren Physiol 306:F812–F821 Mori J, Patel VB, Ramprasath T, Alrob OA, DesAulniers J, Scholey JW, Lopaschuk GD, Oudit GY (2014) Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Ren Physiol 306:F812–F821
120.
go back to reference Belisário AR, da Silva AA, Silva CV, de Souza LM, Wakabayashi EA, Araujo SA, Simões e Silva AC (2019) Sickle cell disease nephropathy: an update on risk factors and potential biomarkers in pediatric patients. Biomark Med 13:965–985 Belisário AR, da Silva AA, Silva CV, de Souza LM, Wakabayashi EA, Araujo SA, Simões e Silva AC (2019) Sickle cell disease nephropathy: an update on risk factors and potential biomarkers in pediatric patients. Biomark Med 13:965–985
121.
go back to reference Belisário AR, Vieira ELM, Almeida JA, Mendes FG, Miranda AS, Rezende PV, Viana MB, Simões E, Silva AC (2020) Evidence for interactions between inflammatory markers and renin-angiotensin system molecules in the occurrence of albuminuria in children with sickle cell anemia. Cytokine 125:154800PubMed Belisário AR, Vieira ELM, Almeida JA, Mendes FG, Miranda AS, Rezende PV, Viana MB, Simões E, Silva AC (2020) Evidence for interactions between inflammatory markers and renin-angiotensin system molecules in the occurrence of albuminuria in children with sickle cell anemia. Cytokine 125:154800PubMed
122.
go back to reference Belisário AR, Almeida JA, Mendes FG, da Silva DMM, Planes W, Rezende PV, Silva CM, Brito AC, Sales RR, Viana MB, Simões E, Silva AC (2020) Prevalence and risk factors for albuminuria and glomerular hyperfiltration in a large cohort of children with sickle cell anemia. Am J Hematol 95:E125–E128PubMed Belisário AR, Almeida JA, Mendes FG, da Silva DMM, Planes W, Rezende PV, Silva CM, Brito AC, Sales RR, Viana MB, Simões E, Silva AC (2020) Prevalence and risk factors for albuminuria and glomerular hyperfiltration in a large cohort of children with sickle cell anemia. Am J Hematol 95:E125–E128PubMed
123.
go back to reference Belisário AR, Vieira ÉLM, de Almeida JA, Mendes FG, Miranda AS, Rezende PV, Viana MB, Simões E, Silva AC (2019) Low urinary levels of angiotensin-converting enzyme 2 may contribute to albuminuria in children with sickle cell anaemia. Brit J Hematol 185:190–193 Belisário AR, Vieira ÉLM, de Almeida JA, Mendes FG, Miranda AS, Rezende PV, Viana MB, Simões E, Silva AC (2019) Low urinary levels of angiotensin-converting enzyme 2 may contribute to albuminuria in children with sickle cell anaemia. Brit J Hematol 185:190–193
124.
go back to reference Pinheiro SVB, Dias RF, Fabiano RCG, Araujo SA, Simões e Silva AC (2019) Pediatric lupus nephritis. Braz J Nephrol 41:252–265 Pinheiro SVB, Dias RF, Fabiano RCG, Araujo SA, Simões e Silva AC (2019) Pediatric lupus nephritis. Braz J Nephrol 41:252–265
125.
go back to reference Teplitsky V, Shoenfeld Y, Tanay A (2006) The renin-angiotensin system in lupus: physiology, genes and practice, in animals and humans. Lupus 15:319–325PubMed Teplitsky V, Shoenfeld Y, Tanay A (2006) The renin-angiotensin system in lupus: physiology, genes and practice, in animals and humans. Lupus 15:319–325PubMed
126.
go back to reference De Albuquerque DA, Saxena V, Adams DE, Boivin GP, Brunner HI, Witte DP, Singh RR (2004) An ACE inhibitor reduces Th2 cytokines and TGF-β1 and TGF-β2 isoforms in murine lupus nephritis. Kidney Int 65:846–859PubMedPubMedCentral De Albuquerque DA, Saxena V, Adams DE, Boivin GP, Brunner HI, Witte DP, Singh RR (2004) An ACE inhibitor reduces Th2 cytokines and TGF-β1 and TGF-β2 isoforms in murine lupus nephritis. Kidney Int 65:846–859PubMedPubMedCentral
127.
go back to reference Zhou P, Yang XL, Wang X, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273PubMedPubMedCentral Zhou P, Yang XL, Wang X, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273PubMedPubMedCentral
128.
go back to reference South AM, Brady TM, Flynn JT (2020) ACE2, COVID-19, and ACE inhibitor and ARB use during the pandemic: the pediatric perspective. Hypertension 76:16–22PubMed South AM, Brady TM, Flynn JT (2020) ACE2, COVID-19, and ACE inhibitor and ARB use during the pandemic: the pediatric perspective. Hypertension 76:16–22PubMed
129.
go back to reference Epidemiology Working Group of NCIP Epidemic Response, Chinese Center for Disease Control and Prevention (2020) The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 41:145–151 Epidemiology Working Group of NCIP Epidemic Response, Chinese Center for Disease Control and Prevention (2020) The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 41:145–151
130.
go back to reference Liu W, Zhang Q, Chen J, Xiang R, Song H, Shu S, Chen L, Liang L, Zhou J, You L, Wu P, Zhang B, Lu Y, Xia L, Huang L, Yang Y, Liu F, Semple MG, Cowling BJ, Lan K, Sun Z, Yu H, Liu Y (2020) Detection of Covid-19 in children in early January 2020 in Wuhan, China. N Engl J Med 382:1370–1371PubMedPubMedCentral Liu W, Zhang Q, Chen J, Xiang R, Song H, Shu S, Chen L, Liang L, Zhou J, You L, Wu P, Zhang B, Lu Y, Xia L, Huang L, Yang Y, Liu F, Semple MG, Cowling BJ, Lan K, Sun Z, Yu H, Liu Y (2020) Detection of Covid-19 in children in early January 2020 in Wuhan, China. N Engl J Med 382:1370–1371PubMedPubMedCentral
132.
go back to reference Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323:1239–1242PubMed Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323:1239–1242PubMed
134.
go back to reference Heinonen S, Rodriguez-Fernandez R, Diaz A, Rodriguez-Pastor SO, Ramilo O, Mejias A (2019) Infant immune response to respiratory viral infections. Immunol Allergy Clin 39:361–376 Heinonen S, Rodriguez-Fernandez R, Diaz A, Rodriguez-Pastor SO, Ramilo O, Mejias A (2019) Infant immune response to respiratory viral infections. Immunol Allergy Clin 39:361–376
135.
go back to reference Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–1448PubMedPubMedCentral Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–1448PubMedPubMedCentral
136.
go back to reference Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramírez-Vallejo E, Suárez JA, Zambrano LI, Villamil-Gómez WE, Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H, Ahmad T, Sah R, Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19) (2020) Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infec Dis 34:101623 Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramírez-Vallejo E, Suárez JA, Zambrano LI, Villamil-Gómez WE, Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H, Ahmad T, Sah R, Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19) (2020) Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infec Dis 34:101623
137.
go back to reference Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D (2020) COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Resp Critic Care Med 201:1299–1300 Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D (2020) COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Resp Critic Care Med 201:1299–1300
139.
go back to reference Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 39:529–539PubMedPubMedCentral Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 39:529–539PubMedPubMedCentral
140.
go back to reference Vinturache AE, Smith FG (2014) Do angiotensin type 2 receptors modulate haemodynamic effects of type 1 receptors in conscious newborn lambs? J Renin Angiotensin Aldosterone Syst 15:450–457PubMed Vinturache AE, Smith FG (2014) Do angiotensin type 2 receptors modulate haemodynamic effects of type 1 receptors in conscious newborn lambs? J Renin Angiotensin Aldosterone Syst 15:450–457PubMed
141.
go back to reference Sampson AK, Moritz KM, Denton KM (2012) Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gender Med 9:21–32 Sampson AK, Moritz KM, Denton KM (2012) Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gender Med 9:21–32
143.
go back to reference Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MHC, Nigro D (2004) A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res 62:587–593PubMed Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MHC, Nigro D (2004) A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res 62:587–593PubMed
144.
go back to reference Hinojosa-Laborde C, Craig T, Zheng W, Ji H, Haywood JR, Sandberg K (2004) Ovariectomy augments hypertension in aging female Dahl salt-sensitive rats. Hypertension 44:405–409PubMed Hinojosa-Laborde C, Craig T, Zheng W, Ji H, Haywood JR, Sandberg K (2004) Ovariectomy augments hypertension in aging female Dahl salt-sensitive rats. Hypertension 44:405–409PubMed
145.
go back to reference Sullivan JC, Rodriguez-Miguelez P, Zimmerman MA, Harris RA (2015) Differences in angiotensin (1–7) between men and women. Am J Physiol Heart Circ Physiol 308:H1171–H1176PubMedPubMedCentral Sullivan JC, Rodriguez-Miguelez P, Zimmerman MA, Harris RA (2015) Differences in angiotensin (1–7) between men and women. Am J Physiol Heart Circ Physiol 308:H1171–H1176PubMedPubMedCentral
Metadata
Title
2020 update on the renin–angiotensin–aldosterone system in pediatric kidney disease and its interactions with coronavirus
Authors
Ana Cristina Simões e Silva
Katharina Lanza
Vitória Andrade Palmeira
Larissa Braga Costa
Joseph T. Flynn
Publication date
01-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 6/2021
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-020-04759-1

Other articles of this Issue 6/2021

Pediatric Nephrology 6/2021 Go to the issue