Skip to main content
Top
Published in: Pediatric Nephrology 4/2013

01-04-2013 | Review

Hypophosphatemia and growth

Authors: Fernando Santos, Rocío Fuente, Natalia Mejia, Laura Mantecon, Helena Gil-Peña, Flor A. Ordoñez

Published in: Pediatric Nephrology | Issue 4/2013

Login to get access

Abstract

Over the last decade the discovery of fibroblast growth factor 23 (FGF23) and the progressive and ongoing clarification of its role in phosphate and mineral metabolism have led to expansion of the diagnostic spectrum of primary hypophosphatemic syndromes. This article focuses on the impairment of growth in these syndromes. Growth retardation is a common, but not constant, feature and it presents with large variability. As a result of the very low prevalence of other forms of primary hypophosphatemic syndromes, the description of longitudinal growth and the pathogenesis of its impairment have been mostly studied in X-linked hypophosphatemia (XLH) patients and in Hyp mice, the animal model of this disease. In general, children with XLH have short stature with greater shortness of lower limbs than trunk. Treatment with phosphate supplements and 1α vitamin D derivatives heals active lesions of rickets, but does not normalize growth of XLH patients. Patients might benefit from recombinant human growth hormone (rhGH) therapy, which may accelerate the growth rate without increasing body disproportion or correcting hypophosphatemia. These clinical data as well as research findings obtained in Hyp mice suggest that the pathogenesis of defective growth in XLH and other hypophosphatemic syndromes is not entirely dependent on the mineralization disorder and point to other effects of hypophosphatemia itself or FGF23 on the metabolism of bone and growth plate.
Literature
1.
go back to reference Naderi ASA, Reilly RF (2010) Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol 6:657–665CrossRef Naderi ASA, Reilly RF (2010) Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol 6:657–665CrossRef
2.
go back to reference Bistarakis L, Voskaki I, Lambadaridis J, Sereti H, Sbyrakis S (1986) Renal handling of phosphate in the first six months of life. Arch Dis Child 61:677–681PubMedCrossRef Bistarakis L, Voskaki I, Lambadaridis J, Sereti H, Sbyrakis S (1986) Renal handling of phosphate in the first six months of life. Arch Dis Child 61:677–681PubMedCrossRef
3.
go back to reference Lyon AJ, Mcintosh N (1984) Calcium and phosphorus balance in extremely low birth weight infants in the first six weeks of life. Arch Dis Child 59:1145–1150PubMedCrossRef Lyon AJ, Mcintosh N (1984) Calcium and phosphorus balance in extremely low birth weight infants in the first six weeks of life. Arch Dis Child 59:1145–1150PubMedCrossRef
4.
go back to reference Thalassinos NC, Leese B, Lathan SC, Joplin GF (1970) Urinary excretion of phosphate in normal children. Arch Dis Child 46:269–272CrossRef Thalassinos NC, Leese B, Lathan SC, Joplin GF (1970) Urinary excretion of phosphate in normal children. Arch Dis Child 46:269–272CrossRef
5.
go back to reference Cirillo M, Ciacci C, De Santo NG (2008) Age, renal tubular phosphate reabsorption, and serum phosphate levels in adults. N Engl J Med 359:864–866PubMedCrossRef Cirillo M, Ciacci C, De Santo NG (2008) Age, renal tubular phosphate reabsorption, and serum phosphate levels in adults. N Engl J Med 359:864–866PubMedCrossRef
7.
go back to reference Francis F (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11:130–136CrossRef Francis F (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11:130–136CrossRef
8.
go back to reference Francis F, Strom TM, Hennig S, Böddrich A, Lorenz B, Brandau O, Mohnike KL, Cagnoli M, Steffens C, Klages S, Borzym K, Pohl T, Oudet C, Econs MJ, Rowe PS, Reinhardt R, Meitinger T, Lehrach H (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 7:573–585PubMed Francis F, Strom TM, Hennig S, Böddrich A, Lorenz B, Brandau O, Mohnike KL, Cagnoli M, Steffens C, Klages S, Borzym K, Pohl T, Oudet C, Econs MJ, Rowe PS, Reinhardt R, Meitinger T, Lehrach H (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 7:573–585PubMed
9.
go back to reference Gaucher C, Walrant-Debray O, Nguyen TM, Esterle L, Garabédian M, Jehan F (2009) PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet 125:401–411PubMedCrossRef Gaucher C, Walrant-Debray O, Nguyen TM, Esterle L, Garabédian M, Jehan F (2009) PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet 125:401–411PubMedCrossRef
10.
go back to reference Econs M, McEnery P (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder. J Clin Endocrinol Metab 82:674–681PubMedCrossRef Econs M, McEnery P (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder. J Clin Endocrinol Metab 82:674–681PubMedCrossRef
11.
go back to reference The ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF 23. Nat Genet 26:345–348CrossRef The ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF 23. Nat Genet 26:345–348CrossRef
12.
go back to reference Lorenz-Depiereux B, Bastepe M, Benet-Pagès A, Amyere M, Wagenstaller J, Müller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Jüppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250PubMedCrossRef Lorenz-Depiereux B, Bastepe M, Benet-Pagès A, Amyere M, Wagenstaller J, Müller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Jüppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250PubMedCrossRef
13.
go back to reference Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315PubMedCrossRef Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315PubMedCrossRef
14.
go back to reference Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Höhne W, Schauer G, Lehmann M, Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M, Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nürnberg P (2003) Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet 34:379–381PubMedCrossRef Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Höhne W, Schauer G, Lehmann M, Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M, Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nürnberg P (2003) Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet 34:379–381PubMedCrossRef
15.
go back to reference Lorenz-Depiereux B, Schnabel D, Tiosano D, Häusler G, Strom TM (2010) Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 86:267–272PubMedCrossRef Lorenz-Depiereux B, Schnabel D, Tiosano D, Häusler G, Strom TM (2010) Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 86:267–272PubMedCrossRef
16.
go back to reference Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, Manor E, Buriakovsky S, Hadad Y, Goding J, Parvari R (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86:273–278PubMedCrossRef Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, Manor E, Buriakovsky S, Hadad Y, Goding J, Parvari R (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86:273–278PubMedCrossRef
17.
go back to reference Nitschke Y, Baujat G, Botschen U, Wittkampf T, du Moulin M, Stella J, Le Merrer M, Guest G, Lambot K, Tazarourte-Pinturier MF, Chassaing N, Roche O, Feenstra I, Loechner K, Deshpande C, Garber SJ, Chikarmane R, Steinmann B, Shahinyan T, Martorell L, Davies J, Smith WE, Kahler SG, McCulloch M, Wraige E, Loidi L, Höhne W, Martin L, Hadj-Rabia S, Terkeltaub R, Rutsch F (2012) Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet 90:25–39PubMedCrossRef Nitschke Y, Baujat G, Botschen U, Wittkampf T, du Moulin M, Stella J, Le Merrer M, Guest G, Lambot K, Tazarourte-Pinturier MF, Chassaing N, Roche O, Feenstra I, Loechner K, Deshpande C, Garber SJ, Chikarmane R, Steinmann B, Shahinyan T, Martorell L, Davies J, Smith WE, Kahler SG, McCulloch M, Wraige E, Loidi L, Höhne W, Martin L, Hadj-Rabia S, Terkeltaub R, Rutsch F (2012) Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet 90:25–39PubMedCrossRef
18.
go back to reference Miedlich SU, Zhu ED, Sabbaggh Y, Demay MB (2010) The receptor-dependent actions of 1,25-dihydroxyvitamin D are required for normal growth plate maturation in NPt2a knockout mice. Endocrinology 151:4607–4612PubMedCrossRef Miedlich SU, Zhu ED, Sabbaggh Y, Demay MB (2010) The receptor-dependent actions of 1,25-dihydroxyvitamin D are required for normal growth plate maturation in NPt2a knockout mice. Endocrinology 151:4607–4612PubMedCrossRef
19.
go back to reference Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ, Garringer HJ, Vidal R, Chan RJ, Goodwin CB, Hui SL, Peacock M, White KE (2011) Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A 108:E1146–E1155PubMedCrossRef Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ, Garringer HJ, Vidal R, Chan RJ, Goodwin CB, Hui SL, Peacock M, White KE (2011) Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A 108:E1146–E1155PubMedCrossRef
20.
go back to reference Negri AL, Negrotti T, Alonso G, Pasqualini T (2004) Different forms of clinical presentation of an autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation in one family. Medicina (B Aires) 64:103–106 Negri AL, Negrotti T, Alonso G, Pasqualini T (2004) Different forms of clinical presentation of an autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation in one family. Medicina (B Aires) 64:103–106
21.
go back to reference Gribaa M, Younes M, Bouyacoub Y, Korbaa W, Ben Charfeddine I, Touzi M, Adala L, Mamay O, Bergaoui N, Saad A (2010) An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation. J Bone Miner Metab 28:111–115PubMedCrossRef Gribaa M, Younes M, Bouyacoub Y, Korbaa W, Ben Charfeddine I, Touzi M, Adala L, Mamay O, Bergaoui N, Saad A (2010) An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation. J Bone Miner Metab 28:111–115PubMedCrossRef
22.
go back to reference Sun Y, Wang O, Xia W, Jiang Y, Li M, Xing X, Hu Y, Liu H, Meng X, Zhou X (2012) FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets. J Bone Miner Metab 30:78–84PubMedCrossRef Sun Y, Wang O, Xia W, Jiang Y, Li M, Xing X, Hu Y, Liu H, Meng X, Zhou X (2012) FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets. J Bone Miner Metab 30:78–84PubMedCrossRef
23.
go back to reference Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Jüppner H, Jonsson KB (2004) Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087–3094PubMedCrossRef Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Jüppner H, Jonsson KB (2004) Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087–3094PubMedCrossRef
24.
go back to reference Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, Maor J, WeissgartenJ, J, Averbukh Z, Cohen N, Edelstein S, Liberman UA (1987) “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets: two phenotypical expressions of a common genetic defect. N Engl J Med 316:125–129PubMedCrossRef Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, Maor J, WeissgartenJ, J, Averbukh Z, Cohen N, Edelstein S, Liberman UA (1987) “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets: two phenotypical expressions of a common genetic defect. N Engl J Med 316:125–129PubMedCrossRef
25.
go back to reference Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192PubMedCrossRef Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192PubMedCrossRef
26.
go back to reference Mejia-Gaviria N, Gil-Peña H, Coto E, Pérez-Menéndez TM, Santos F (2010) Genetic and clinical peculiarities in a new family with hereditary hypophosphatemic rickets with hypercalciuria: a case report. Orphanet J Rare Dis 5:1PubMedCrossRef Mejia-Gaviria N, Gil-Peña H, Coto E, Pérez-Menéndez TM, Santos F (2010) Genetic and clinical peculiarities in a new family with hereditary hypophosphatemic rickets with hypercalciuria: a case report. Orphanet J Rare Dis 5:1PubMedCrossRef
27.
go back to reference Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 297:F671–F678PubMedCrossRef Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 297:F671–F678PubMedCrossRef
28.
go back to reference Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672PubMedCrossRef Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672PubMedCrossRef
29.
go back to reference Makras P, Hamdy NAT, Kant SG, Papapoulos SE (2008) Normal growth and muscle dysfunction in X-linked hypophosphatemic rickets associated with a novel mutation in the PHEX gene. J Clin Endocrinol Metab 93:1386–1389PubMedCrossRef Makras P, Hamdy NAT, Kant SG, Papapoulos SE (2008) Normal growth and muscle dysfunction in X-linked hypophosphatemic rickets associated with a novel mutation in the PHEX gene. J Clin Endocrinol Metab 93:1386–1389PubMedCrossRef
30.
go back to reference Zivičnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schröder C, Brämswig J, Haffner D, Hypophosphatemic Rickets Study Group of Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie (2011) Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol 26:223–231PubMedCrossRef Zivičnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schröder C, Brämswig J, Haffner D, Hypophosphatemic Rickets Study Group of Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie (2011) Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol 26:223–231PubMedCrossRef
31.
go back to reference Mäkitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 88:3591–3597PubMedCrossRef Mäkitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 88:3591–3597PubMedCrossRef
32.
go back to reference Schütt SM, Schumacher M, Holterhus PM, Felgenhauer S, Hiort O (2003) Effect of GH replacement therapy in two male siblings with combined X-linked hypophosphatemia and partial GH deficiency. Eur J Endocrinol 149:317–321PubMedCrossRef Schütt SM, Schumacher M, Holterhus PM, Felgenhauer S, Hiort O (2003) Effect of GH replacement therapy in two male siblings with combined X-linked hypophosphatemia and partial GH deficiency. Eur J Endocrinol 149:317–321PubMedCrossRef
33.
go back to reference Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G (2001) Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr 138:236–243PubMedCrossRef Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G (2001) Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr 138:236–243PubMedCrossRef
34.
go back to reference Haffner D, Nissel R, Wühl E, Mehls O (2004) Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics 113:e593PubMedCrossRef Haffner D, Nissel R, Wühl E, Mehls O (2004) Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics 113:e593PubMedCrossRef
35.
go back to reference Sochett E, Doria AS, Henriques F, Kooh SW, Daneman A, Mäkitie O (2004) Growth and metabolic control during puberty in girls with X-linked hypophosphataemic rickets. Horm Res 61:252–256PubMedCrossRef Sochett E, Doria AS, Henriques F, Kooh SW, Daneman A, Mäkitie O (2004) Growth and metabolic control during puberty in girls with X-linked hypophosphataemic rickets. Horm Res 61:252–256PubMedCrossRef
36.
go back to reference McNair SL, Stickler GB (1969) Growth in familial hypophosphatemic vitamin-D-resistant rickets. N Engl J Med 281:511–516CrossRef McNair SL, Stickler GB (1969) Growth in familial hypophosphatemic vitamin-D-resistant rickets. N Engl J Med 281:511–516CrossRef
37.
go back to reference Jehan F, Gaucher C, Nguyen TM, Walrant-Debray O, Lahlou N, Sinding C, Déchaux M, Garabédian M (2008) Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. J Clin Endocrinol Metab 93:4672–4682PubMedCrossRef Jehan F, Gaucher C, Nguyen TM, Walrant-Debray O, Lahlou N, Sinding C, Déchaux M, Garabédian M (2008) Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. J Clin Endocrinol Metab 93:4672–4682PubMedCrossRef
38.
go back to reference Quinlan C, Guegan K, Offiah A, Neill RO, Hiorns MP, Ellard S, Bockenhauer D, Hoff WV, Waters AM (2012) Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol 27:581–588PubMedCrossRef Quinlan C, Guegan K, Offiah A, Neill RO, Hiorns MP, Ellard S, Bockenhauer D, Hoff WV, Waters AM (2012) Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol 27:581–588PubMedCrossRef
39.
go back to reference Strom TM, Francis F, Lorenz B, Böddrich A, Econs MJ, Lehrach H, Meitinger T (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 6:165–171PubMedCrossRef Strom TM, Francis F, Lorenz B, Böddrich A, Econs MJ, Lehrach H, Meitinger T (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 6:165–171PubMedCrossRef
40.
go back to reference Eicher EM, Southard JL, Scriver CR, Glorieux FH (1976) Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets (X-linkage/phosphate transport/animal model). Proc Natl Acad Sci USA 73:4667–4671PubMedCrossRef Eicher EM, Southard JL, Scriver CR, Glorieux FH (1976) Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets (X-linkage/phosphate transport/animal model). Proc Natl Acad Sci USA 73:4667–4671PubMedCrossRef
41.
go back to reference Yuan B, Takaiwa M, Clemens TL, Feng JQ, Kumar R, Rowe PS, Xie Y, Drezner MK (2008) Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest 118:722–734PubMed Yuan B, Takaiwa M, Clemens TL, Feng JQ, Kumar R, Rowe PS, Xie Y, Drezner MK (2008) Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest 118:722–734PubMed
42.
go back to reference Tenenhouse HS (1999) X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant 14:333–341PubMedCrossRef Tenenhouse HS (1999) X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant 14:333–341PubMedCrossRef
43.
go back to reference Ranch D, Zhang MYH, Portale AA, Perwad F (2011) Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in Hyp mice. J Bone Miner Res 26:1883–1890PubMedCrossRef Ranch D, Zhang MYH, Portale AA, Perwad F (2011) Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in Hyp mice. J Bone Miner Res 26:1883–1890PubMedCrossRef
44.
go back to reference Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K (2003) Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 285:F1271–F1278PubMed Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K (2003) Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 285:F1271–F1278PubMed
45.
go back to reference Baum M, Loleh S, Saini N, Seikaly M, Dwarakanath V, Quigley R (2003) Correction of proximal tubule phosphate transport defect in Hyp mice in vivo and in vitro with indomethacin. Proc Natl Acad Sci USA 100:11098–11103PubMedCrossRef Baum M, Loleh S, Saini N, Seikaly M, Dwarakanath V, Quigley R (2003) Correction of proximal tubule phosphate transport defect in Hyp mice in vivo and in vitro with indomethacin. Proc Natl Acad Sci USA 100:11098–11103PubMedCrossRef
46.
go back to reference Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642PubMedCrossRef Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642PubMedCrossRef
47.
go back to reference Qiu ZQ, Travers R, Rauch F, Glorieux FH, Scriver CR, Tenenhouse HS (2004) Effect of gene dose and parental origin on bone histomorphometry in X-linked Hyp mice. Bone 34:134–139PubMedCrossRef Qiu ZQ, Travers R, Rauch F, Glorieux FH, Scriver CR, Tenenhouse HS (2004) Effect of gene dose and parental origin on bone histomorphometry in X-linked Hyp mice. Bone 34:134–139PubMedCrossRef
48.
go back to reference Carbajo E, López JM, Santos F, Ordóñez FA, Niño P, Rodríguez J (2001) Histologic and dynamic changes induced by chronic metabolic acidosis in the rat growth plate. J Am Soc Nephrol 12:1228–1234PubMed Carbajo E, López JM, Santos F, Ordóñez FA, Niño P, Rodríguez J (2001) Histologic and dynamic changes induced by chronic metabolic acidosis in the rat growth plate. J Am Soc Nephrol 12:1228–1234PubMed
49.
go back to reference Alvarez-Garcia O, Carbajo-Pérez E, Garcia E, Gil H, Molinos I, Rodriguez J, Ordoñez FA, Santos F (2007) Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol 22:954–961PubMedCrossRef Alvarez-Garcia O, Carbajo-Pérez E, Garcia E, Gil H, Molinos I, Rodriguez J, Ordoñez FA, Santos F (2007) Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol 22:954–961PubMedCrossRef
50.
go back to reference Gil-Peña H, Garcia-Lopez E, Alvarez-Garcia O, Loredo V, Carbajo-Perez E, Ordoñez FA, Rodriguez-Suarez J, Santos F (2009) Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment. Am J Physiol Renal Physiol 297:F639–F645PubMedCrossRef Gil-Peña H, Garcia-Lopez E, Alvarez-Garcia O, Loredo V, Carbajo-Perez E, Ordoñez FA, Rodriguez-Suarez J, Santos F (2009) Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment. Am J Physiol Renal Physiol 297:F639–F645PubMedCrossRef
51.
go back to reference Santos F, Carbajo-Pérez E, Rodríguez J, Fernández-Fuente M, Molinos I, Amil B, García E (2005) Alterations of the growth plate in chronic renal failure. Pediatr Nephrol 20:330–334PubMedCrossRef Santos F, Carbajo-Pérez E, Rodríguez J, Fernández-Fuente M, Molinos I, Amil B, García E (2005) Alterations of the growth plate in chronic renal failure. Pediatr Nephrol 20:330–334PubMedCrossRef
52.
go back to reference Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge AM, Rowe PS (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772PubMedCrossRef Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge AM, Rowe PS (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772PubMedCrossRef
53.
go back to reference Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351PubMedCrossRef Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351PubMedCrossRef
54.
go back to reference Rowe PSN, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46PubMedCrossRef Rowe PSN, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46PubMedCrossRef
55.
go back to reference Liu S, Brown TA, Zhou J, Xiao ZS, Awad H, Guilak F, Quarles LD (2005) Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol 16:1645–1653PubMedCrossRef Liu S, Brown TA, Zhou J, Xiao ZS, Awad H, Guilak F, Quarles LD (2005) Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol 16:1645–1653PubMedCrossRef
56.
go back to reference Liu S, Guo R, Quarles LD (2001) Cloning and characterization of the proximal murine Phex promoter. Endocrinology 142:3987–3995PubMedCrossRef Liu S, Guo R, Quarles LD (2001) Cloning and characterization of the proximal murine Phex promoter. Endocrinology 142:3987–3995PubMedCrossRef
57.
go back to reference Miao D, Bai X, Panda DK, Karaplis AC, Goltzman D, McKee MD (2004) Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in Hyp mice. Bone 34:638–647PubMedCrossRef Miao D, Bai X, Panda DK, Karaplis AC, Goltzman D, McKee MD (2004) Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in Hyp mice. Bone 34:638–647PubMedCrossRef
58.
go back to reference Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J (2007) Fibroblast growth factor expression in the postnatal growth plate. Bone 40:577–586PubMedCrossRef Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J (2007) Fibroblast growth factor expression in the postnatal growth plate. Bone 40:577–586PubMedCrossRef
59.
go back to reference Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, Quarles LD (2009) Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 23:1505–1518PubMedCrossRef Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, Quarles LD (2009) Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 23:1505–1518PubMedCrossRef
60.
go back to reference Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408PubMedCrossRef Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408PubMedCrossRef
61.
go back to reference Wu S, Levenson A, Kharitonenkov A, De Luca F (2012) Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 287:26060–26067PubMedCrossRef Wu S, Levenson A, Kharitonenkov A, De Luca F (2012) Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 287:26060–26067PubMedCrossRef
62.
go back to reference Petersen DJ, Boniface AM, Schranck FW, Rupich RC, Whyte MP (1992) X-linked hypophosphatemic rickets: a study (with literature review) of linear growth response to calcitriol and phosphate therapy. J Bone Miner Res 7:583–597PubMedCrossRef Petersen DJ, Boniface AM, Schranck FW, Rupich RC, Whyte MP (1992) X-linked hypophosphatemic rickets: a study (with literature review) of linear growth response to calcitriol and phosphate therapy. J Bone Miner Res 7:583–597PubMedCrossRef
63.
go back to reference Rohmiller MT, Tylkowski C, Kriss VM, Mier RJ (1999) The effect of osteotomy on bowing and height in children with X-linked hypophosphatemia. J Pediatr Orthop 19:114–118PubMed Rohmiller MT, Tylkowski C, Kriss VM, Mier RJ (1999) The effect of osteotomy on bowing and height in children with X-linked hypophosphatemia. J Pediatr Orthop 19:114–118PubMed
64.
go back to reference Dudkiewicz I, Schindler A, Ganel A (2003) Elongation of long bones for short stature in patients with hypophosphatemic rickets. Isr Med Assoc J 5:66–67PubMed Dudkiewicz I, Schindler A, Ganel A (2003) Elongation of long bones for short stature in patients with hypophosphatemic rickets. Isr Med Assoc J 5:66–67PubMed
65.
go back to reference Živičnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, Holder M, Billing H, Fischer DC, Rabl W, Schumacher M, Hiort O, Haffner D, Hypophosphatemic Rickets Study Group of the Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie (2011) Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab 96:E2097–E2105PubMedCrossRef Živičnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, Holder M, Billing H, Fischer DC, Rabl W, Schumacher M, Hiort O, Haffner D, Hypophosphatemic Rickets Study Group of the Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie (2011) Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab 96:E2097–E2105PubMedCrossRef
66.
go back to reference Cameron FJ, Sochett EB, Daneman A, Kooh SW (1999) A trial of growth hormone therapy in well-controlled hypophosphataemic rickets. Clin Endocrinol (Oxf) 50:577–582CrossRef Cameron FJ, Sochett EB, Daneman A, Kooh SW (1999) A trial of growth hormone therapy in well-controlled hypophosphataemic rickets. Clin Endocrinol (Oxf) 50:577–582CrossRef
68.
go back to reference Seikaly MG, Brown R, Baum M (1997) The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics 100:879–884PubMedCrossRef Seikaly MG, Brown R, Baum M (1997) The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics 100:879–884PubMedCrossRef
69.
go back to reference Roy S, Martel J, Tenenhouse HS (1997) Growth hormone normalizes renal 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression but not Na+-phosphate cotransporter (Npt2) mRNA in phosphate-deprived Hyp mice. J Bone Miner Res 12:1672–1680PubMedCrossRef Roy S, Martel J, Tenenhouse HS (1997) Growth hormone normalizes renal 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression but not Na+-phosphate cotransporter (Npt2) mRNA in phosphate-deprived Hyp mice. J Bone Miner Res 12:1672–1680PubMedCrossRef
70.
go back to reference Tenenhouse HS, Roy S, Martel J, Gauthier C (1998) Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol 275:F527–F534PubMed Tenenhouse HS, Roy S, Martel J, Gauthier C (1998) Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol 275:F527–F534PubMed
71.
go back to reference Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD (2008) Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol 3:658–664PubMedCrossRef Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD (2008) Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol 3:658–664PubMedCrossRef
72.
go back to reference Seikaly MG, Waber PG, Baum M (2008) Urinary prostaglandins and the effect of indomethacin on phosphate excretion in children with hypophosphatemic rickets. Pediatr Res 64:210–212PubMedCrossRef Seikaly MG, Waber PG, Baum M (2008) Urinary prostaglandins and the effect of indomethacin on phosphate excretion in children with hypophosphatemic rickets. Pediatr Res 64:210–212PubMedCrossRef
73.
go back to reference Yamashita T, Konishi M, Miyake A, Inui K, Itoh N (2002) Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 277:28265–28270PubMedCrossRef Yamashita T, Konishi M, Miyake A, Inui K, Itoh N (2002) Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 277:28265–28270PubMedCrossRef
74.
go back to reference Farrow EG, Summers LJ, Schiavi SC, McCormick JA, Ellison DH, White KE (2010) Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation. J Endocrinol 207:67–75PubMedCrossRef Farrow EG, Summers LJ, Schiavi SC, McCormick JA, Ellison DH, White KE (2010) Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation. J Endocrinol 207:67–75PubMedCrossRef
75.
go back to reference Zhang MY, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, Perwad F (2012) Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice. Endocrinology 153:1806–1816PubMedCrossRef Zhang MY, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, Perwad F (2012) Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice. Endocrinology 153:1806–1816PubMedCrossRef
Metadata
Title
Hypophosphatemia and growth
Authors
Fernando Santos
Rocío Fuente
Natalia Mejia
Laura Mantecon
Helena Gil-Peña
Flor A. Ordoñez
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Pediatric Nephrology / Issue 4/2013
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-012-2364-9

Other articles of this Issue 4/2013

Pediatric Nephrology 4/2013 Go to the issue