Skip to main content
Top
Published in: Pediatric Nephrology 7/2007

Open Access 01-07-2007 | Original Article

Rapamycin retards growth and causes marked alterations in the growth plate of young rats

Authors: Oscar Alvarez-Garcia, Eduardo Carbajo-Pérez, Enrique Garcia, Helena Gil, Ines Molinos, Julian Rodriguez, Flor A. Ordoñez, Fernando Santos

Published in: Pediatric Nephrology | Issue 7/2007

Login to get access

Abstract

Rapamycin is a potent immunosuppressant with antitumoral properties widely used in the field of renal transplantation. To test the hypothesis that the antiproliferative and antiangiogenic activity of rapamycin interferes with the normal structure and function of growth plate and impairs longitudinal growth, 4-week-old male rats (n = 10/group) receiving 2 mg/kg per day of intraperitoneal rapamycin (RAPA) or vehicle (C) for 14 days were compared. Rapamycin markedly decreased bone longitudinal growth rate (94 ± 3 vs. 182 ± 3 μm/day), body weight gain (60.2 ± 1.4 vs. 113.6 ± 1.9 g), food intake (227.8 ± 2.6 vs. 287.5 ± 3.4 g), and food efficiency (0.26 ± 0.00 vs. 0.40 ± 0.01 g/g). Signs of altered cartilage formation such as reduced chondrocyte proliferation (bromodeoxiuridine-labeled cells 32.9 ± 1.4 vs. 45.2 ± 1.1%), disturbed maturation and hypertrophy (height of terminal chondrocytes 26 ± 0 vs. 29 ± 0 μm), and decreased cartilage resorption (18.7 ± 0.5 vs. 31.0 ± 0.8 tartrate-resistant phosphatase alkaline reactive cells per 100 terminal chondrocytes), together with morphological evidence of altered vascular invasion, were seen in the growth plate of RAPA animals. This study indicates that rapamycin can severely impair body growth in fast-growing rats and distort growth-plate structure and dynamics. These undesirable effects must be kept in mind when rapamycin is administered to children.
Literature
1.
go back to reference Gupta P, Kaufman S, Fishbein TM (2005) Sirolimus for solid organ transplantation in children. Pediatr Transplant 9:269–276PubMedCrossRef Gupta P, Kaufman S, Fishbein TM (2005) Sirolimus for solid organ transplantation in children. Pediatr Transplant 9:269–276PubMedCrossRef
2.
go back to reference Sindhi R, Seward J, Mazariegos G, Soltys K, Seward L, Smith A, Kosmach B, Venkataramanan R (2005) Replacing calcineurin inhibitors with mTOR inhibitors in children. Pediatr Transplant 9:391–397PubMedCrossRef Sindhi R, Seward J, Mazariegos G, Soltys K, Seward L, Smith A, Kosmach B, Venkataramanan R (2005) Replacing calcineurin inhibitors with mTOR inhibitors in children. Pediatr Transplant 9:391–397PubMedCrossRef
3.
go back to reference Flechner SM, Goldfarb D, Modlin C, Feng J, Krishnamurthi V, Mastroianni B, Savas K, Cook DJ, Novick AC (2002) Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine. Transplantation 74:1070–1076PubMedCrossRef Flechner SM, Goldfarb D, Modlin C, Feng J, Krishnamurthi V, Mastroianni B, Savas K, Cook DJ, Novick AC (2002) Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine. Transplantation 74:1070–1076PubMedCrossRef
4.
go back to reference Morales JM, Campistol JM, Kreis H, Mourad G, Eris J, Schena FP, Grinyo JM, Nanni G, Andres A, Castaing N, Brault Y, Burke JT (2005) Sirolimus-based therapy with or without cyclosporine: long-term follow-up in renal transplant patients. Transplant Proc 37:693–696PubMedCrossRef Morales JM, Campistol JM, Kreis H, Mourad G, Eris J, Schena FP, Grinyo JM, Nanni G, Andres A, Castaing N, Brault Y, Burke JT (2005) Sirolimus-based therapy with or without cyclosporine: long-term follow-up in renal transplant patients. Transplant Proc 37:693–696PubMedCrossRef
5.
go back to reference Kahan BD, Knight R, Schoenberg L, Pobielski J, Kerman RH, Mahalati K, Yakupoglu Y, Aki FT, Katz S, Van Buren CT (2003) Ten years of sirolimus therapy for human renal transplantation: the University of Texas at Houston experience. Transplant Proc 35:25S–34SPubMedCrossRef Kahan BD, Knight R, Schoenberg L, Pobielski J, Kerman RH, Mahalati K, Yakupoglu Y, Aki FT, Katz S, Van Buren CT (2003) Ten years of sirolimus therapy for human renal transplantation: the University of Texas at Houston experience. Transplant Proc 35:25S–34SPubMedCrossRef
6.
go back to reference Tonshoff B, Hocker B (2006) Treatment strategies in pediatric solid organ transplan recipients with calcineurin inhibitor-induced nephrotoxicity. Pediatr Transplant 10:721–729PubMedCrossRef Tonshoff B, Hocker B (2006) Treatment strategies in pediatric solid organ transplan recipients with calcineurin inhibitor-induced nephrotoxicity. Pediatr Transplant 10:721–729PubMedCrossRef
7.
go back to reference Tredger JM, Brown NW, Dhawan A (2006) Immunosuppression in pediatric solid organ transplantation: opportunities, risks, and management. Pediatr Transplant 10:879–892PubMedCrossRef Tredger JM, Brown NW, Dhawan A (2006) Immunosuppression in pediatric solid organ transplantation: opportunities, risks, and management. Pediatr Transplant 10:879–892PubMedCrossRef
8.
go back to reference Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35:7S–14SPubMedCrossRef Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35:7S–14SPubMedCrossRef
9.
go back to reference Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135PubMedCrossRef Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135PubMedCrossRef
10.
go back to reference DiJoseph JF, Fluhler E, Armstrong J, Sharr M, Sehgal SN (1996) Therapeutic blood levels of sirolimus (rapamycin) in the allografted rat. Transplantation 62:1109–1112PubMedCrossRef DiJoseph JF, Fluhler E, Armstrong J, Sharr M, Sehgal SN (1996) Therapeutic blood levels of sirolimus (rapamycin) in the allografted rat. Transplantation 62:1109–1112PubMedCrossRef
11.
go back to reference Whiting PH, Woo J, Adam BJ, Hasan NU, Davidson RJ, Thomson AW (1991) Toxicity of rapamycin-a comparative and combination study with cyclosporine at immunotherapeutic dosage in the rat. Transplantation 52:203–208PubMedCrossRef Whiting PH, Woo J, Adam BJ, Hasan NU, Davidson RJ, Thomson AW (1991) Toxicity of rapamycin-a comparative and combination study with cyclosporine at immunotherapeutic dosage in the rat. Transplantation 52:203–208PubMedCrossRef
12.
go back to reference Romero DF, Buchinsky FJ, Rucinski B, Cvetkovic M, Bryer HP, Liang XG, Ma YF, Jee WS, Epstein S (1995) Rapamycin: a bone sparing immunosuppressant? J Bone Miner Res 10:760–768PubMedCrossRef Romero DF, Buchinsky FJ, Rucinski B, Cvetkovic M, Bryer HP, Liang XG, Ma YF, Jee WS, Epstein S (1995) Rapamycin: a bone sparing immunosuppressant? J Bone Miner Res 10:760–768PubMedCrossRef
13.
go back to reference Molinos I, Santos F, Carbajo-Perez E, Garcia E, Rodriguez J, Alvarez-Garcia O, Gil H, Ordoñez FA, Loredo V, Mallada L (2006) Catch-up growth follows an abnormal pattern in experimental renal insufficiency and growth hormone treatment normalizes it. Kidney Int 70:1955–1961PubMedCrossRef Molinos I, Santos F, Carbajo-Perez E, Garcia E, Rodriguez J, Alvarez-Garcia O, Gil H, Ordoñez FA, Loredo V, Mallada L (2006) Catch-up growth follows an abnormal pattern in experimental renal insufficiency and growth hormone treatment normalizes it. Kidney Int 70:1955–1961PubMedCrossRef
14.
go back to reference DiJoseph JF, Sharma RN, Chang JY (1992) The effect of rapamycin on kidney function in the Sprague-Dawley rat. Transplantation 53:507–513PubMedCrossRef DiJoseph JF, Sharma RN, Chang JY (1992) The effect of rapamycin on kidney function in the Sprague-Dawley rat. Transplantation 53:507–513PubMedCrossRef
15.
go back to reference Podder H, Stepkowski SM, Napoli KL, Clark J, Verani RR, Chou TC, Kahan BD (2001) Pharmacokinetic interacions augment toxicities of sirolimus/cyclosporine combinations. J Am Soc Nephrol 12:1059–1071PubMed Podder H, Stepkowski SM, Napoli KL, Clark J, Verani RR, Chou TC, Kahan BD (2001) Pharmacokinetic interacions augment toxicities of sirolimus/cyclosporine combinations. J Am Soc Nephrol 12:1059–1071PubMed
16.
go back to reference Sigalet DL, Kneteman NM, Thomson AB (1992) Reduction of nutrient absorption in normal rats by cyclosporine. Transplantation 53:1103–1107PubMedCrossRef Sigalet DL, Kneteman NM, Thomson AB (1992) Reduction of nutrient absorption in normal rats by cyclosporine. Transplantation 53:1103–1107PubMedCrossRef
17.
go back to reference Stepkowski SM (2003) Preclinical results of sirolimus treatment in transplant models. Transplant Proc 35:219S–226SPubMedCrossRef Stepkowski SM (2003) Preclinical results of sirolimus treatment in transplant models. Transplant Proc 35:219S–226SPubMedCrossRef
18.
go back to reference Cobo A, Lopez JM, Carbajo E, Santos F, Alvarez J, Fernandez M, Weruaga A (1999) Growth plate cartilage formation and resorption are differentially depressed in growth retarded uremic rats. J Am Soc Nephrol 10:971–979PubMed Cobo A, Lopez JM, Carbajo E, Santos F, Alvarez J, Fernandez M, Weruaga A (1999) Growth plate cartilage formation and resorption are differentially depressed in growth retarded uremic rats. J Am Soc Nephrol 10:971–979PubMed
19.
go back to reference Joffe I, Katz I, Sehgal S, Bex F, Kharode Y, Tamasi J, Epstein S (1993) Lack of change of cancellous bone volume with short-term use of the new immunosuppressant rapamycin in rats. Calcif Tissue Int 53:45–52PubMedCrossRef Joffe I, Katz I, Sehgal S, Bex F, Kharode Y, Tamasi J, Epstein S (1993) Lack of change of cancellous bone volume with short-term use of the new immunosuppressant rapamycin in rats. Calcif Tissue Int 53:45–52PubMedCrossRef
20.
go back to reference Goodman GR, Dissanayake IR, Sodam BR, Gorodetsky E, Lu J, Ma YF, Jee WS, Epstein S (2001) Immunosuppressant use without bone loss-implications for bone loss after transplantation. J Bone Miner Res 16:72–78PubMedCrossRef Goodman GR, Dissanayake IR, Sodam BR, Gorodetsky E, Lu J, Ma YF, Jee WS, Epstein S (2001) Immunosuppressant use without bone loss-implications for bone loss after transplantation. J Bone Miner Res 16:72–78PubMedCrossRef
21.
go back to reference Levine AJ, Feng Z, Mak TW, You H, Jin S (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20:267–275PubMedCrossRef Levine AJ, Feng Z, Mak TW, You H, Jin S (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20:267–275PubMedCrossRef
22.
go back to reference O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTor inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508PubMedPubMedCentralCrossRef O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTor inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508PubMedPubMedCentralCrossRef
23.
go back to reference Alexia C, Fourmatgeat P, Delautier D, Groyer A (2006) Insulin-like growth factor-I stimulates H4II rat hepatoma cell proliferation: dominant role of PI-3K/Akt signaling. Exp Cell Res 312:1142–1152PubMedCrossRef Alexia C, Fourmatgeat P, Delautier D, Groyer A (2006) Insulin-like growth factor-I stimulates H4II rat hepatoma cell proliferation: dominant role of PI-3K/Akt signaling. Exp Cell Res 312:1142–1152PubMedCrossRef
24.
go back to reference Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via de phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744PubMedCrossRef Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via de phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744PubMedCrossRef
25.
go back to reference Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C (1996) Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res 14:927–936PubMedCrossRef Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C (1996) Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res 14:927–936PubMedCrossRef
26.
go back to reference Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126:1611–1623PubMedCrossRef Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126:1611–1623PubMedCrossRef
27.
go back to reference van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801PubMedCrossRef van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801PubMedCrossRef
28.
go back to reference Ippolito E, Pedrini VA, Pedrini-Mille A (1983) Histochemical properties of cartilage proteoglycans. J Histochem Cytochem 31:53–61PubMedCrossRef Ippolito E, Pedrini VA, Pedrini-Mille A (1983) Histochemical properties of cartilage proteoglycans. J Histochem Cytochem 31:53–61PubMedCrossRef
30.
go back to reference Nakamura H, Sato G, Hirata A, Yamamoto T (2004) Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Bone 34:48–56PubMedCrossRef Nakamura H, Sato G, Hirata A, Yamamoto T (2004) Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Bone 34:48–56PubMedCrossRef
31.
go back to reference Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein.Mecker S, Kossida S, O’Reilly T, Lane H, Susa M (2004) Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35:1144–1156PubMedCrossRef Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein.Mecker S, Kossida S, O’Reilly T, Lane H, Susa M (2004) Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35:1144–1156PubMedCrossRef
32.
go back to reference Ferrara N (1999) Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 56:794–814PubMedCrossRef Ferrara N (1999) Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 56:794–814PubMedCrossRef
33.
go back to reference Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:617–618CrossRef Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:617–618CrossRef
34.
go back to reference Baron J, Klein KO, Yanovski JA, Novosad JA, Bacher JD, Bolander ME, Cutler GB Jr (1994) Induction of growth plate cartilage ossification by basic fibroblast growth factor. Endocrinology 135:2790–2793PubMedCrossRef Baron J, Klein KO, Yanovski JA, Novosad JA, Bacher JD, Bolander ME, Cutler GB Jr (1994) Induction of growth plate cartilage ossification by basic fibroblast growth factor. Endocrinology 135:2790–2793PubMedCrossRef
35.
go back to reference Hiraki Y, Ionue H, Iyama K, Kamizono A, Ochiai M, Shukunami C, Iijima S, Suzuki F, Kondo J (1997) Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 272:32419–32426PubMedCrossRef Hiraki Y, Ionue H, Iyama K, Kamizono A, Ochiai M, Shukunami C, Iijima S, Suzuki F, Kondo J (1997) Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 272:32419–32426PubMedCrossRef
36.
go back to reference Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9:265–277PubMedCrossRef Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9:265–277PubMedCrossRef
37.
go back to reference Srinivas V, Shapiro IM (2006) Chondrocytes embedded in the epiphyseal growth plates of long bones undergo autophagy prior to the induction of osteogenesis. Autophagy 2:215–216PubMedCrossRef Srinivas V, Shapiro IM (2006) Chondrocytes embedded in the epiphyseal growth plates of long bones undergo autophagy prior to the induction of osteogenesis. Autophagy 2:215–216PubMedCrossRef
Metadata
Title
Rapamycin retards growth and causes marked alterations in the growth plate of young rats
Authors
Oscar Alvarez-Garcia
Eduardo Carbajo-Pérez
Enrique Garcia
Helena Gil
Ines Molinos
Julian Rodriguez
Flor A. Ordoñez
Fernando Santos
Publication date
01-07-2007
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 7/2007
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-007-0456-8

Other articles of this Issue 7/2007

Pediatric Nephrology 7/2007 Go to the issue