Skip to main content
Top
Published in: Pediatric Nephrology 6/2012

01-06-2012 | Educational Review

Tubulointerstitial injury and the progression of chronic kidney disease

Authors: Kavita S. Hodgkins, H. William Schnaper

Published in: Pediatric Nephrology | Issue 6/2012

Login to get access

Abstract

In chronic kidney disease (CKD), once injury from any number of disease processes reaches a threshold, there follows an apparently irreversible course toward decline in kidney function. The tubulointerstitium may play a key role in this common progression pathway. Direct injury, high metabolic demands, or stimuli from various other forms of renal dysfunction activate tubular cells. These, in turn, interact with interstitial tissue elements and inflammatory cells, causing further pathologic changes in the renal parenchyma. The tissue response to these changes thus generates a feed-forward loop of kidney injury and progressive loss of function. This article reviews the mechanisms of this negative cycle mediating CKD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schnaper HW, Hubchak SC, Runyan CE, Browne JA, Finer G, Liu X, Hayashida T (2010) A conceptual framework for the molecular pathogenesis of progressive kidney disease. Pediatr Nephrol 25:2223–2230PubMedCrossRef Schnaper HW, Hubchak SC, Runyan CE, Browne JA, Finer G, Liu X, Hayashida T (2010) A conceptual framework for the molecular pathogenesis of progressive kidney disease. Pediatr Nephrol 25:2223–2230PubMedCrossRef
2.
go back to reference Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int 67:404–419PubMedCrossRef Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int 67:404–419PubMedCrossRef
3.
go back to reference Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal diseases. Part II: the correlations. Hum Pathol 1:631–641PubMedCrossRef Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal diseases. Part II: the correlations. Hum Pathol 1:631–641PubMedCrossRef
4.
go back to reference Bohle A, Mackensen-Haen S, VonGise, Grund KE, Wehrmann M, Batz C, Bogen Schutz O, Schmitt H, Nagy J, Muller C (1990) The consequences of tubule-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis. Pathol Res Pract 186:135–144PubMedCrossRef Bohle A, Mackensen-Haen S, VonGise, Grund KE, Wehrmann M, Batz C, Bogen Schutz O, Schmitt H, Nagy J, Muller C (1990) The consequences of tubule-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis. Pathol Res Pract 186:135–144PubMedCrossRef
5.
go back to reference Rodriguez-Iturbe B, Garcia Garcia G (2010) The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clin Pract 116:c81–c88PubMedCrossRef Rodriguez-Iturbe B, Garcia Garcia G (2010) The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clin Pract 116:c81–c88PubMedCrossRef
6.
go back to reference Fogo A, Hawkins EP, Berry PL, Glick AD, Chiang ML, MacDonell RC Jr, Ichikawa I (1990) Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int 38:115–123PubMedCrossRef Fogo A, Hawkins EP, Berry PL, Glick AD, Chiang ML, MacDonell RC Jr, Ichikawa I (1990) Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int 38:115–123PubMedCrossRef
7.
go back to reference LeHir M, Besse-Eschmann V (2003) A novel mechanism of nephron loss in a murine model of crescentic glomerulonephritis. Kidney Int 63:591–599CrossRef LeHir M, Besse-Eschmann V (2003) A novel mechanism of nephron loss in a murine model of crescentic glomerulonephritis. Kidney Int 63:591–599CrossRef
8.
go back to reference Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43:9–17PubMedCrossRef Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43:9–17PubMedCrossRef
9.
10.
go back to reference Nielsen R, Christensen EI (2010) Proteinuria and events beyond the slit. Pediatr Nephrol 25:813–822PubMedCrossRef Nielsen R, Christensen EI (2010) Proteinuria and events beyond the slit. Pediatr Nephrol 25:813–822PubMedCrossRef
11.
go back to reference Biemesderfer D (2006) Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule? Kidney Int 69:1717–1721PubMedCrossRef Biemesderfer D (2006) Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule? Kidney Int 69:1717–1721PubMedCrossRef
12.
go back to reference Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21:1859–1867PubMedCrossRef Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21:1859–1867PubMedCrossRef
13.
go back to reference Shimizu H, Maruyama S, Yuzawa Y, Kato T, Miki Y, Suzuki S, Sato W, Morita Y, Maruyama H, Egashira K, Matsuo S (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. J Am Soc Nephrol 14:1496–1505PubMedCrossRef Shimizu H, Maruyama S, Yuzawa Y, Kato T, Miki Y, Suzuki S, Sato W, Morita Y, Maruyama H, Egashira K, Matsuo S (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. J Am Soc Nephrol 14:1496–1505PubMedCrossRef
14.
go back to reference Anders H-J, Ninichuk V, Schlondorff D (2006) Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonist. Kidney Int 69:29–32PubMedCrossRef Anders H-J, Ninichuk V, Schlondorff D (2006) Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonist. Kidney Int 69:29–32PubMedCrossRef
15.
go back to reference Kassiri Z, Oudit GY, Kandalam V, Awad A, Wang X, Ziou X, Maeda N, Herzenberg AM, Scholey JW (2009) Loss of TIMP3 enhances interstitial nephritis and fibrosis. J Am Soc Nephrol 20:1223–1235PubMedCrossRef Kassiri Z, Oudit GY, Kandalam V, Awad A, Wang X, Ziou X, Maeda N, Herzenberg AM, Scholey JW (2009) Loss of TIMP3 enhances interstitial nephritis and fibrosis. J Am Soc Nephrol 20:1223–1235PubMedCrossRef
16.
go back to reference Whaley-Connell AT, Morris EM, Rehmer N, Yaghoubian JC, Wei Y, Hayden MR, Habib J, Stump CS, Sowers JR (2007) Albumin activation of NAD(P)H oxidase activity is mediated via Rac1 in proximal tubule cells. Am J Nephrol 27:15–23PubMedCrossRef Whaley-Connell AT, Morris EM, Rehmer N, Yaghoubian JC, Wei Y, Hayden MR, Habib J, Stump CS, Sowers JR (2007) Albumin activation of NAD(P)H oxidase activity is mediated via Rac1 in proximal tubule cells. Am J Nephrol 27:15–23PubMedCrossRef
17.
go back to reference Cooper MA, Buddington B, Miller NL, Alfrey AC (1995) Urinary iron speciation in nephrotic syndrome. Am J Kidney Dis 25:314–319PubMedCrossRef Cooper MA, Buddington B, Miller NL, Alfrey AC (1995) Urinary iron speciation in nephrotic syndrome. Am J Kidney Dis 25:314–319PubMedCrossRef
18.
go back to reference Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hase H, Kaneko T, Hirata Y, Goto A, Fujita T, Omata M (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62:1628–1637PubMedCrossRef Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hase H, Kaneko T, Hirata Y, Goto A, Fujita T, Omata M (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62:1628–1637PubMedCrossRef
19.
go back to reference Van Timmeren MM, Bakker SJL, Stegeman CA, Gans RO, van Goor H (2005) Addition of oleic acid to delipidated bovine serum albumin aggravates renal damage in experimental protein-overload nephrosis. Nephrol Dial Transplant 20:2349–2357PubMedCrossRef Van Timmeren MM, Bakker SJL, Stegeman CA, Gans RO, van Goor H (2005) Addition of oleic acid to delipidated bovine serum albumin aggravates renal damage in experimental protein-overload nephrosis. Nephrol Dial Transplant 20:2349–2357PubMedCrossRef
20.
go back to reference Arici M, Chana R, Lewington A, Brown J, Brunskill NJ (2003) Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ. J Am Soc Nephrol 14:17–27PubMedCrossRef Arici M, Chana R, Lewington A, Brown J, Brunskill NJ (2003) Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ. J Am Soc Nephrol 14:17–27PubMedCrossRef
21.
go back to reference Souma T, Abe M, Moriguchi T, Takai J, Yanagisawa-Miyazawa N, Shibata E, Akiyama Y, Toyohara T, Suzuki T, Tanemoto M, Abe T, Sato H, Yamamoto M, Ito S (2011) Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells. J Am Soc Nephrol 22:635–648PubMedCrossRef Souma T, Abe M, Moriguchi T, Takai J, Yanagisawa-Miyazawa N, Shibata E, Akiyama Y, Toyohara T, Suzuki T, Tanemoto M, Abe T, Sato H, Yamamoto M, Ito S (2011) Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells. J Am Soc Nephrol 22:635–648PubMedCrossRef
22.
go back to reference Nangaku M, Pippin J, Couser W (2002) C6 mediates chronic progression of tubulointerstitial damage in rats with remnant kidneys. J Am Soc Nephrol 13:928–936PubMed Nangaku M, Pippin J, Couser W (2002) C6 mediates chronic progression of tubulointerstitial damage in rats with remnant kidneys. J Am Soc Nephrol 13:928–936PubMed
23.
go back to reference He C, Imai M, Song H, Quigg RJ, Tomlinson S (2005) Complement inhibitors targeted to the proximal tubule prevent injury in experimental nephritic syndrome and demonstrate a key role for C5b-9. J Immunol 174:5750–5757PubMed He C, Imai M, Song H, Quigg RJ, Tomlinson S (2005) Complement inhibitors targeted to the proximal tubule prevent injury in experimental nephritic syndrome and demonstrate a key role for C5b-9. J Immunol 174:5750–5757PubMed
24.
go back to reference Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253PubMedCrossRef Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253PubMedCrossRef
25.
go back to reference Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627PubMedCrossRef Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627PubMedCrossRef
26.
go back to reference Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, Sutton TA (2011) Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol 300:F721–F733PubMedCrossRef Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, Sutton TA (2011) Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol 300:F721–F733PubMedCrossRef
27.
go back to reference Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedCrossRef Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedCrossRef
28.
go back to reference Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12PubMedCrossRef Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12PubMedCrossRef
29.
go back to reference García-Sánchez O, López-Hernández FJ, López-Novoa JM (2010) An integrative view on the role of TGF-β in the progressive tubular deletion associated with chronic kidney disease. Kidney Int 77:950–955PubMedCrossRef García-Sánchez O, López-Hernández FJ, López-Novoa JM (2010) An integrative view on the role of TGF-β in the progressive tubular deletion associated with chronic kidney disease. Kidney Int 77:950–955PubMedCrossRef
30.
go back to reference Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator, and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–e92PubMedCrossRef Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator, and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–e92PubMedCrossRef
31.
go back to reference Eddy AA, Fogo AB (2006) Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 17:2999–3012PubMedCrossRef Eddy AA, Fogo AB (2006) Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 17:2999–3012PubMedCrossRef
32.
go back to reference Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530PubMedCrossRef Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530PubMedCrossRef
33.
go back to reference Lange-Sperandio B, Fulda S, Vandewalle A, Chevalier RL (2003) Macrophages induce apoptosis in proximal tubule cells. Pediatr Nephrol 18:335–341PubMed Lange-Sperandio B, Fulda S, Vandewalle A, Chevalier RL (2003) Macrophages induce apoptosis in proximal tubule cells. Pediatr Nephrol 18:335–341PubMed
34.
go back to reference Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–75PubMedCrossRef Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–75PubMedCrossRef
35.
go back to reference Okusa MD, Chertow GM, Portilla D (2009) The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. Clin J Am Soc Nephrol 4:520–522PubMedCrossRef Okusa MD, Chertow GM, Portilla D (2009) The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. Clin J Am Soc Nephrol 4:520–522PubMedCrossRef
36.
go back to reference Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867–872PubMedCrossRef Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867–872PubMedCrossRef
37.
go back to reference Xu H, Zeng L, Peng H, Chen S, Jones J, Chew TL, Sadeghi MM, Kanwar YS, Danesh FR (2006) HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced “inside-out” signaling to extracellular matrix by preventing RhoA activation. Am J Physiol Renal Physiol 291:F995–F1004PubMedCrossRef Xu H, Zeng L, Peng H, Chen S, Jones J, Chew TL, Sadeghi MM, Kanwar YS, Danesh FR (2006) HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced “inside-out” signaling to extracellular matrix by preventing RhoA activation. Am J Physiol Renal Physiol 291:F995–F1004PubMedCrossRef
38.
go back to reference Wang Z, Tang L, Zhu Q, Yi F, Zhang F, Li PL, Li N (2011) Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int 79:300–310PubMedCrossRef Wang Z, Tang L, Zhu Q, Yi F, Zhang F, Li PL, Li N (2011) Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int 79:300–310PubMedCrossRef
40.
go back to reference Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW (2011) Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 300:F898–F905PubMedCrossRef Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW (2011) Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 300:F898–F905PubMedCrossRef
41.
42.
43.
go back to reference Queisser N, Oteiza PI, Stopper H, Oli RG, Schupp N (2011) Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells. Mol Carcinog 50:123–135PubMedCrossRef Queisser N, Oteiza PI, Stopper H, Oli RG, Schupp N (2011) Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells. Mol Carcinog 50:123–135PubMedCrossRef
44.
go back to reference Briet M, Schiffrin EL (2010) Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 6:261–273PubMedCrossRef Briet M, Schiffrin EL (2010) Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 6:261–273PubMedCrossRef
45.
go back to reference Neuhofer W, Pittrow D (2006) Role of endothelin and endothelin receptor antagonists in renal disease. Eur J Clin Invest Suppl 3:78–88CrossRef Neuhofer W, Pittrow D (2006) Role of endothelin and endothelin receptor antagonists in renal disease. Eur J Clin Invest Suppl 3:78–88CrossRef
Metadata
Title
Tubulointerstitial injury and the progression of chronic kidney disease
Authors
Kavita S. Hodgkins
H. William Schnaper
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Pediatric Nephrology / Issue 6/2012
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-011-1992-9

Other articles of this Issue 6/2012

Pediatric Nephrology 6/2012 Go to the issue