Skip to main content
Top
Published in: Dysphagia 1/2013

01-03-2013 | Review Article

New Directions for Understanding Neural Control in Swallowing: The Potential and Promise of Motor Learning

Authors: Ianessa A. Humbert, Rebecca Z. German

Published in: Dysphagia | Issue 1/2013

Login to get access

Abstract

Oropharyngeal swallowing is a complex sensorimotor phenomenon that has had decades of research dedicated to understanding it more thoroughly. However, the underlying neural mechanisms responsible for normal and disordered swallowing remain very vague. We consider this gap in knowledge the result of swallowing research that has been broad (identifying phenomena) but not deep (identifying what controls the phenomena). The goals of this review are to address the complexity of motor control of oropharyngeal swallowing and to review the principles of motor learning based on limb movements as a model system. We compare this literature on limb motor learning to what is known about oropharyngeal function as a first step toward suggesting the use of motor learning principles in swallowing research.
Footnotes
1
An old tale, common to Jain, Buddhist, Sufi Muslim, and Hindu traditions, tells of three blind men who describe an elephant. The first, feeling the trunk, said that an elephant is like a snake, a muscular rope. The second, feeling an ear, said that an elephant is like a soft piece of cloth and very flexible. The third, feeling a leg, said that an elephant is like a strong pillar, covered in tough material.
 
Literature
1.
go back to reference Marshall-Hall E. On the reflex function of the medulla oblongata and medulla spinalis. Philos Trans. 1833;26:635–65. Marshall-Hall E. On the reflex function of the medulla oblongata and medulla spinalis. Philos Trans. 1833;26:635–65.
2.
go back to reference Miller RF, Sherrington CS. Some observations on the bucco-pharyngeal stage of reflex deglutition in the cat. Q J Exp Physiol. 1916;9:147–86. Miller RF, Sherrington CS. Some observations on the bucco-pharyngeal stage of reflex deglutition in the cat. Q J Exp Physiol. 1916;9:147–86.
3.
go back to reference Negus VE. The mechanism of swallowing. Proc R Soc Med. 1942;36:85–92.PubMed Negus VE. The mechanism of swallowing. Proc R Soc Med. 1942;36:85–92.PubMed
4.
go back to reference Wise S, Shadmehr R. Motor control. In: Ramachandran VS, editor. Encyclopedia of the Human Brain. San Diego: Academic Press; 2002. p. 137–57.CrossRef Wise S, Shadmehr R. Motor control. In: Ramachandran VS, editor. Encyclopedia of the Human Brain. San Diego: Academic Press; 2002. p. 137–57.CrossRef
5.
go back to reference Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef
6.
go back to reference Steele CM, Miller AJ. Sensory input pathways and mechanisms in swallowing: a review. Dysphagia. 2010;25(4):323–33.PubMedCrossRef Steele CM, Miller AJ. Sensory input pathways and mechanisms in swallowing: a review. Dysphagia. 2010;25(4):323–33.PubMedCrossRef
7.
go back to reference Humbert IA, Lokhande A, Christopherson H, German R, Stone A. Adaptation of swallowing hyo-laryngeal kinematics is distinct in oral versus pharyngeal sensory processing. J Appl Physiol. 2012;112(10):1698–705.PubMedCrossRef Humbert IA, Lokhande A, Christopherson H, German R, Stone A. Adaptation of swallowing hyo-laryngeal kinematics is distinct in oral versus pharyngeal sensory processing. J Appl Physiol. 2012;112(10):1698–705.PubMedCrossRef
8.
go back to reference Kandel R, Schwartz J, Jessell T. Principles of neuroscience. 4th ed. New York: McGraw-Hill; 2002. Kandel R, Schwartz J, Jessell T. Principles of neuroscience. 4th ed. New York: McGraw-Hill; 2002.
9.
go back to reference Turvey MT, Fonseca S. Nature of motor control: perspectives and issues. Adv Exp Med Biol. 2009;629:93–123.PubMedCrossRef Turvey MT, Fonseca S. Nature of motor control: perspectives and issues. Adv Exp Med Biol. 2009;629:93–123.PubMedCrossRef
10.
go back to reference Turvey M, Shaw R, Mace W. Issues in the theory of action: degrees of freedom, coordinative structures and coalitions. Hillsdale: Lawrence Erlbaum Associates; 1978. Turvey M, Shaw R, Mace W. Issues in the theory of action: degrees of freedom, coordinative structures and coalitions. Hillsdale: Lawrence Erlbaum Associates; 1978.
11.
go back to reference Han DS, et al. Comparison of disordered swallowing patterns in patients with recurrent cortical/subcortical stroke and first-time brainstem stroke. J Rehabil Med. 2005;37(3):189–91.PubMed Han DS, et al. Comparison of disordered swallowing patterns in patients with recurrent cortical/subcortical stroke and first-time brainstem stroke. J Rehabil Med. 2005;37(3):189–91.PubMed
12.
go back to reference Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17(3):166–71.PubMedCrossRef Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17(3):166–71.PubMedCrossRef
13.
go back to reference Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140(3):280–9.PubMedCrossRef Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140(3):280–9.PubMedCrossRef
14.
go back to reference Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18(2):71–7.PubMedCrossRef Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18(2):71–7.PubMedCrossRef
15.
go back to reference Martin BJ, Logemann JA, Shaker R, Dodds WJ. Normal laryngeal valving patterns during three breath-hold maneuvers: a pilot investigation. Dysphagia. 1993;8(1):11–20.PubMedCrossRef Martin BJ, Logemann JA, Shaker R, Dodds WJ. Normal laryngeal valving patterns during three breath-hold maneuvers: a pilot investigation. Dysphagia. 1993;8(1):11–20.PubMedCrossRef
16.
go back to reference Boden K, Hallgren A, Witt Hedstrom H. Effects of three different swallow maneuvers analyzed by videomanometry. Acta Radiol. 2006;47(7):628–33.PubMedCrossRef Boden K, Hallgren A, Witt Hedstrom H. Effects of three different swallow maneuvers analyzed by videomanometry. Acta Radiol. 2006;47(7):628–33.PubMedCrossRef
17.
go back to reference Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G354–60.PubMed Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G354–60.PubMed
18.
go back to reference Babaei A, Kern M, Antonik S, Mepani R, Ward BD, Li SJ, Hyde J, Shaker R. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G422–9.PubMedCrossRef Babaei A, Kern M, Antonik S, Mepani R, Ward BD, Li SJ, Hyde J, Shaker R. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G422–9.PubMedCrossRef
19.
go back to reference Humbert IA, Joel S. Tactile, gustatory, and visual biofeed-back stimuli modulate neural substrates of deglutition. Neuroimage. 2012;59(2):1485–90.PubMedCrossRef Humbert IA, Joel S. Tactile, gustatory, and visual biofeed-back stimuli modulate neural substrates of deglutition. Neuroimage. 2012;59(2):1485–90.PubMedCrossRef
20.
go back to reference Prochazka A, Clarac F, Loeb GE, Rothwell JC, Wolpaw JR. What do reflex and voluntary mean? Modern views on an ancient debate. Exp Brain Res. 2000;130(4):417–32.PubMedCrossRef Prochazka A, Clarac F, Loeb GE, Rothwell JC, Wolpaw JR. What do reflex and voluntary mean? Modern views on an ancient debate. Exp Brain Res. 2000;130(4):417–32.PubMedCrossRef
21.
22.
go back to reference Jean A. Brainstem organization of the swallowing network. Brain Behav Evol. 1984;25(2–3):109–16.PubMedCrossRef Jean A. Brainstem organization of the swallowing network. Brain Behav Evol. 1984;25(2–3):109–16.PubMedCrossRef
23.
go back to reference Gibbs CH, Suit SR. Movements of the jaw after unexpected contact with a hard object. J Dent Res. 1973;52(4):810–4.PubMedCrossRef Gibbs CH, Suit SR. Movements of the jaw after unexpected contact with a hard object. J Dent Res. 1973;52(4):810–4.PubMedCrossRef
24.
go back to reference Miller AJ. The Neuroscientific principles of swallowing and dysphagia (dysphagia series). San Diego: Singular Publishing Group; 1999. p. 284. Miller AJ. The Neuroscientific principles of swallowing and dysphagia (dysphagia series). San Diego: Singular Publishing Group; 1999. p. 284.
25.
27.
go back to reference Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia. 2007;22(3):266–75.PubMedCrossRef Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia. 2007;22(3):266–75.PubMedCrossRef
28.
29.
30.
go back to reference Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102(2):587–600.PubMedCrossRef Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102(2):587–600.PubMedCrossRef
31.
go back to reference German RZ, Crompton AW, Thexton AJ. Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol. 2009;102(2):1017–25.PubMedCrossRef German RZ, Crompton AW, Thexton AJ. Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol. 2009;102(2):1017–25.PubMedCrossRef
32.
go back to reference Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21(6):628–33.PubMedCrossRef Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21(6):628–33.PubMedCrossRef
33.
go back to reference Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol. 2011;21(4):636–44.PubMedCrossRef Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol. 2011;21(4):636–44.PubMedCrossRef
34.
go back to reference Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12(12):739–51.PubMed Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12(12):739–51.PubMed
35.
go back to reference Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.PubMedCrossRef Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.PubMedCrossRef
36.
go back to reference Aasland WA, Baum SR, McFarland DH. Electropalatographic, acoustic, and perceptual data on adaptation to a palatal perturbation. J Acoust Soc Am. 2006;119(4):2372–81.PubMedCrossRef Aasland WA, Baum SR, McFarland DH. Electropalatographic, acoustic, and perceptual data on adaptation to a palatal perturbation. J Acoust Soc Am. 2006;119(4):2372–81.PubMedCrossRef
37.
go back to reference Gritsenko V, Kalaska JF. Rapid online correction is selectively suppressed during movement with a visuomotor transformation. J Neurophysiol. 2010;104(6):3084–104.PubMedCrossRef Gritsenko V, Kalaska JF. Rapid online correction is selectively suppressed during movement with a visuomotor transformation. J Neurophysiol. 2010;104(6):3084–104.PubMedCrossRef
38.
go back to reference Noguchi K, Fujii H, Yamabe Y, Tanaka M, Shimada A, Torisu T, Suenaga H. Anticipation and motor control on repetitive tooth tapping produced by open–close jaw movements. J Oral Rehabil. 2008;35(1):20–6.PubMedCrossRef Noguchi K, Fujii H, Yamabe Y, Tanaka M, Shimada A, Torisu T, Suenaga H. Anticipation and motor control on repetitive tooth tapping produced by open–close jaw movements. J Oral Rehabil. 2008;35(1):20–6.PubMedCrossRef
39.
go back to reference Vasudevan EV, Bastian AJ. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol. 2010;103(1):183–91.PubMedCrossRef Vasudevan EV, Bastian AJ. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol. 2010;103(1):183–91.PubMedCrossRef
40.
go back to reference Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.PubMedCrossRef Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.PubMedCrossRef
41.
go back to reference Searl J, Evitts P, Davis WJ. Perceptual and acoustic evidence of speaker adaptation to a thin pseudopalate. Logoped Phoniatr Vocol. 2006;31(3):107–16.PubMedCrossRef Searl J, Evitts P, Davis WJ. Perceptual and acoustic evidence of speaker adaptation to a thin pseudopalate. Logoped Phoniatr Vocol. 2006;31(3):107–16.PubMedCrossRef
42.
go back to reference Latash M. Neurophysiological basis of movement. 2nd ed. Champaign: Human Kinetics; 2008. Latash M. Neurophysiological basis of movement. 2nd ed. Champaign: Human Kinetics; 2008.
43.
go back to reference Krakauer JW, Shadmehr R. Towards a computational neuropsychology of action. Prog Brain Res. 2007;165:383–94.PubMedCrossRef Krakauer JW, Shadmehr R. Towards a computational neuropsychology of action. Prog Brain Res. 2007;165:383–94.PubMedCrossRef
44.
go back to reference Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14(5 Pt 2):3208–24.PubMed Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14(5 Pt 2):3208–24.PubMed
45.
go back to reference Franklin DW, Wolpert DM. Computational mechanisms of sensorimotor control. Neuron. 2011;72(3):425–42.PubMedCrossRef Franklin DW, Wolpert DM. Computational mechanisms of sensorimotor control. Neuron. 2011;72(3):425–42.PubMedCrossRef
46.
go back to reference Shmuelof L, Krakauer JW. Are we ready for a natural history of motor learning? Neuron. 2011;72(3):469–76.PubMedCrossRef Shmuelof L, Krakauer JW. Are we ready for a natural history of motor learning? Neuron. 2011;72(3):469–76.PubMedCrossRef
47.
go back to reference Donner MW, Bosma JF, Robertson DL. Anatomy and physiology of the pharynx. Gastrointest Radiol. 1985;10(3):196–212.PubMed Donner MW, Bosma JF, Robertson DL. Anatomy and physiology of the pharynx. Gastrointest Radiol. 1985;10(3):196–212.PubMed
48.
go back to reference Smith KK. The evolution of the mammalian pharynx. Zool J Linn Soc. 1992;104:313–49.CrossRef Smith KK. The evolution of the mammalian pharynx. Zool J Linn Soc. 1992;104:313–49.CrossRef
49.
go back to reference Ludlow CL. Recent advances in laryngeal sensorimotor control for voice, speech and swallowing. Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):160–5.PubMedCrossRef Ludlow CL. Recent advances in laryngeal sensorimotor control for voice, speech and swallowing. Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):160–5.PubMedCrossRef
50.
go back to reference Komuro A, Masuda Y, Iwata K, Kobayashi M, Kato T, Hidaka O, Morimoto T. Influence of food thickness and hardness on possible feed-forward control of the masseteric muscle activity in the anesthetized rabbit. Neurosci Res. 2001;39(1):21–9.PubMedCrossRef Komuro A, Masuda Y, Iwata K, Kobayashi M, Kato T, Hidaka O, Morimoto T. Influence of food thickness and hardness on possible feed-forward control of the masseteric muscle activity in the anesthetized rabbit. Neurosci Res. 2001;39(1):21–9.PubMedCrossRef
51.
go back to reference Komuro A, Morimoto T, Iwata K, Inoue T, Masuda Y, Kato T, Hidaka O. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 2001;86(6):2834–44.PubMed Komuro A, Morimoto T, Iwata K, Inoue T, Masuda Y, Kato T, Hidaka O. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 2001;86(6):2834–44.PubMed
52.
go back to reference Ross CF, Baden AL, Georgi J, Herrel A, Metzger KA, Reed DA, Schaerlaeken V, Wolff MS. Chewing variation in lepidosaurs and primates. J Exp Biol. 2010;213(4):572–84.PubMedCrossRef Ross CF, Baden AL, Georgi J, Herrel A, Metzger KA, Reed DA, Schaerlaeken V, Wolff MS. Chewing variation in lepidosaurs and primates. J Exp Biol. 2010;213(4):572–84.PubMedCrossRef
53.
go back to reference Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH. Modulation of mandibular loading and bite force in mammals during mastication. J Exp Biol. 2007;210:1046–63.PubMedCrossRef Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH. Modulation of mandibular loading and bite force in mammals during mastication. J Exp Biol. 2007;210:1046–63.PubMedCrossRef
54.
go back to reference Hidaka O, Morimoto T, Kato T, Masuda Y, Inoue T, Takada K. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1999;82(5):2633–40.PubMed Hidaka O, Morimoto T, Kato T, Masuda Y, Inoue T, Takada K. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1999;82(5):2633–40.PubMed
55.
go back to reference Ottenhoff FA, van der Bilt A, van der Glas HW, Bosman F. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size. Exp Brain Res. 1993;96(3):501–12.PubMedCrossRef Ottenhoff FA, van der Bilt A, van der Glas HW, Bosman F. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size. Exp Brain Res. 1993;96(3):501–12.PubMedCrossRef
56.
go back to reference van der Bilt A, Ottenhoff FA, van der Glas HW, Bosman F, Abbink JH. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open–close movements in humans. J Dent Res. 1997;76(4):839–47.PubMedCrossRef van der Bilt A, Ottenhoff FA, van der Glas HW, Bosman F, Abbink JH. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open–close movements in humans. J Dent Res. 1997;76(4):839–47.PubMedCrossRef
58.
go back to reference Hidaka O, Iwasaki M, Saito M, Morimoto T. Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure. J Dent Res. 1999;78(7):1336–44.PubMedCrossRef Hidaka O, Iwasaki M, Saito M, Morimoto T. Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure. J Dent Res. 1999;78(7):1336–44.PubMedCrossRef
59.
go back to reference Hidaka O, Morimoto T, Masuda Y, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1997;77(6):3168–79.PubMed Hidaka O, Morimoto T, Masuda Y, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1997;77(6):3168–79.PubMed
60.
go back to reference Nasir SM, Ostry DJ. Auditory plasticity and speech motor learning. Proc Natl Acad Sci USA. 2009;106(48):20470–5.PubMedCrossRef Nasir SM, Ostry DJ. Auditory plasticity and speech motor learning. Proc Natl Acad Sci USA. 2009;106(48):20470–5.PubMedCrossRef
61.
go back to reference Houde JF, Jordan MI. Sensorimotor adaptation in speech production. Science. 1998;279(5354):1213–6.PubMedCrossRef Houde JF, Jordan MI. Sensorimotor adaptation in speech production. Science. 1998;279(5354):1213–6.PubMedCrossRef
62.
go back to reference Houde JF, Jordan MI. Sensorimotor adaptation of speech I: Compensation and adaptation. J Speech Lang Hear Res. 2002;45(2):295–310.PubMedCrossRef Houde JF, Jordan MI. Sensorimotor adaptation of speech I: Compensation and adaptation. J Speech Lang Hear Res. 2002;45(2):295–310.PubMedCrossRef
63.
go back to reference Shiller DM, Sato M, Gracco VL, Baum SR. Perceptual recalibration of speech sounds following speech motor learning. J Acoust Soc Am. 2009;125(2):1103–13.PubMedCrossRef Shiller DM, Sato M, Gracco VL, Baum SR. Perceptual recalibration of speech sounds following speech motor learning. J Acoust Soc Am. 2009;125(2):1103–13.PubMedCrossRef
64.
go back to reference Nasir SM, Ostry DJ. Speech motor learning in profoundly deaf adults. Nat Neurosci. 2008;11(10):1217–22.PubMedCrossRef Nasir SM, Ostry DJ. Speech motor learning in profoundly deaf adults. Nat Neurosci. 2008;11(10):1217–22.PubMedCrossRef
65.
go back to reference Avivi-Arber L, Lee JC, Sessle BJ. Face sensorimotor cortex neuroplasticity associated with intraoral alterations (chap 9). Prog Brain Res. 2011;188:135–50.PubMedCrossRef Avivi-Arber L, Lee JC, Sessle BJ. Face sensorimotor cortex neuroplasticity associated with intraoral alterations (chap 9). Prog Brain Res. 2011;188:135–50.PubMedCrossRef
66.
go back to reference Adachi K, Lee JC, Hu JW, Yao D, Sessle BJ. Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res. 2007;24(3):97–109.PubMedCrossRef Adachi K, Lee JC, Hu JW, Yao D, Sessle BJ. Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res. 2007;24(3):97–109.PubMedCrossRef
67.
go back to reference Avivi-Arber L, Lee JC, Sessle BJ. Cortical orofacial motor representation: effect of diet consistency. J Dent Res. 2010;89(10):1142–7.PubMedCrossRef Avivi-Arber L, Lee JC, Sessle BJ. Cortical orofacial motor representation: effect of diet consistency. J Dent Res. 2010;89(10):1142–7.PubMedCrossRef
68.
go back to reference Sessle BJ, Hannam AG. Mastication and swallowing: biological and chemical correlates. Toronto: University of Toronto Press; 1976. 194 pp. Sessle BJ, Hannam AG. Mastication and swallowing: biological and chemical correlates. Toronto: University of Toronto Press; 1976. 194 pp.
69.
go back to reference German RZ, Crompton AW, Owerkowicz T, Thexton AJ. Volume and rate of milk delivery as determinants of swallowing in an infant model (Sus scrofia). Dysphagia. 2004;19:147–54.PubMed German RZ, Crompton AW, Owerkowicz T, Thexton AJ. Volume and rate of milk delivery as determinants of swallowing in an infant model (Sus scrofia). Dysphagia. 2004;19:147–54.PubMed
70.
go back to reference Chee C, Arshad S, Singh S, Mistry S, Hamdy S. The influence of chemical gustatory stimuli and oral anaesthesia on healthy human pharyngeal swallowing. Chem Senses. 2005;30(5):393–400.PubMedCrossRef Chee C, Arshad S, Singh S, Mistry S, Hamdy S. The influence of chemical gustatory stimuli and oral anaesthesia on healthy human pharyngeal swallowing. Chem Senses. 2005;30(5):393–400.PubMedCrossRef
71.
go back to reference Ding R, Logemann JA, Larson CR, Rademaker AW. The effects of taste and consistency on swallow physiology in younger and older healthy individuals: a surface electromyographic study. J Speech Lang Hear Res. 2003;46(4):977–89.PubMedCrossRef Ding R, Logemann JA, Larson CR, Rademaker AW. The effects of taste and consistency on swallow physiology in younger and older healthy individuals: a surface electromyographic study. J Speech Lang Hear Res. 2003;46(4):977–89.PubMedCrossRef
72.
go back to reference Leow LP, Huckabee ML, Sharma S, Tooley TP. The influence of taste on swallowing apnea, oral preparation time, and duration and amplitude of submental muscle contraction. Chem Senses. 2007;32(2):119–28.PubMedCrossRef Leow LP, Huckabee ML, Sharma S, Tooley TP. The influence of taste on swallowing apnea, oral preparation time, and duration and amplitude of submental muscle contraction. Chem Senses. 2007;32(2):119–28.PubMedCrossRef
73.
go back to reference Palmer PM, McCulloch TM, Jaffe D, Neel AT. Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region. Dysphagia. 2005;20(3):210–7.PubMedCrossRef Palmer PM, McCulloch TM, Jaffe D, Neel AT. Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region. Dysphagia. 2005;20(3):210–7.PubMedCrossRef
74.
go back to reference Pelletier CA, Dhanaraj GE. The effect of taste and palatability on lingual swallowing pressure. Dysphagia. 2006;21(2):121–8.PubMedCrossRef Pelletier CA, Dhanaraj GE. The effect of taste and palatability on lingual swallowing pressure. Dysphagia. 2006;21(2):121–8.PubMedCrossRef
75.
go back to reference German RZ, Campbell-Malone R, Crompton AW, Ding P, Holman S, Konow N, Thexton AJ. The concept of hyoid posture. Dysphagia. 2011;26(2):97–8.PubMedCrossRef German RZ, Campbell-Malone R, Crompton AW, Ding P, Holman S, Konow N, Thexton AJ. The concept of hyoid posture. Dysphagia. 2011;26(2):97–8.PubMedCrossRef
76.
go back to reference Luo P, Zhang J, Yang R, Pendlebury W. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw–tongue coordination via hypoglossal premotor neurons. Eur J Neurosci. 2006;23(12):3269–83.PubMedCrossRef Luo P, Zhang J, Yang R, Pendlebury W. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw–tongue coordination via hypoglossal premotor neurons. Eur J Neurosci. 2006;23(12):3269–83.PubMedCrossRef
77.
go back to reference Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.PubMedCrossRef Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.PubMedCrossRef
78.
go back to reference Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef
Metadata
Title
New Directions for Understanding Neural Control in Swallowing: The Potential and Promise of Motor Learning
Authors
Ianessa A. Humbert
Rebecca Z. German
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Dysphagia / Issue 1/2013
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-012-9432-y

Other articles of this Issue 1/2013

Dysphagia 1/2013 Go to the issue