Skip to main content
Top
Published in: Brain Structure and Function 9/2021

01-12-2021 | Electroencephalography | Original Article

Neural correlates of metacontrast masking across different contrast polarities

Authors: Alaz Aydin, Haluk Ogmen, Hulusi Kafaligonul

Published in: Brain Structure and Function | Issue 9/2021

Login to get access

Abstract

Metacontrast masking is a powerful illusion to investigate the dynamics of perceptual processing and to control conscious visual perception. However, the neural mechanisms underlying this fundamental investigative tool are still debated. In the present study, we examined metacontrast masking across different contrast polarities by employing a contour discrimination task combined with EEG (Electroencephalography). When the target and mask had the same contrast polarity, a typical U-shaped metacontrast function was observed. A change in mask polarity (i.e., opposite mask polarity) shifted this masking function to a monotonic increasing function such that the target visibility was strongly suppressed at stimulus onset asynchronies less than 50 ms. This transition in metacontrast function has been typically interpreted as an increase in intrachannel inhibition of the sustained activities functionally linked to object visibility and identity. Our EEG analyses revealed an early (160–300 ms) and a late (300–550 ms) spatiotemporal cluster associated with this effect of polarity. The early cluster was mainly over occipital and parieto-occipital scalp sites. On the other hand, the later modulations of the evoked activities were centered over parietal and centro-parietal sites. Since both of these clusters were beyond 160 ms, the EEG results point to late recurrent inhibitory mechanisms. Although the findings here do not directly preclude other proposed mechanisms for metacontrast, they highlight the involvement of recurrent intrachannel inhibition in metacontrast masking.
Literature
go back to reference Akyuz S, Pavan A, Kaya U, Kafaligonul H (2020) Short- and long-term forms of neural adaptation: an ERP investigation of dynamic motion aftereffects. Cortex 125:122–134PubMedCrossRef Akyuz S, Pavan A, Kaya U, Kafaligonul H (2020) Short- and long-term forms of neural adaptation: an ERP investigation of dynamic motion aftereffects. Cortex 125:122–134PubMedCrossRef
go back to reference Bachmann T (1988) Time course of the subjective contrast enhancement for a second stimulus in successively paired above-threshold transient forms: perceptual retouch instead of forward masking. Vis Res 28:1255–1261PubMedCrossRef Bachmann T (1988) Time course of the subjective contrast enhancement for a second stimulus in successively paired above-threshold transient forms: perceptual retouch instead of forward masking. Vis Res 28:1255–1261PubMedCrossRef
go back to reference Bachmann T (1994) Psychophysiology of visual masking: the fine structure of conscious experience. Nova Science Publishers, Commack, NY Bachmann T (1994) Psychophysiology of visual masking: the fine structure of conscious experience. Nova Science Publishers, Commack, NY
go back to reference Bachmann T, Francis G (2013) Visual masking: studying perception, attention, and consciousness. Academic Press, Oxford, UK Bachmann T, Francis G (2013) Visual masking: studying perception, attention, and consciousness. Academic Press, Oxford, UK
go back to reference Breitmeyer BG (1978a) Metacontrast with black and white stimuli: evidence of inhibition of on and off sustained activity by either on or off transient activity. Vis Res 18:1443–1448PubMedCrossRef Breitmeyer BG (1978a) Metacontrast with black and white stimuli: evidence of inhibition of on and off sustained activity by either on or off transient activity. Vis Res 18:1443–1448PubMedCrossRef
go back to reference Breitmeyer BG (1978b) Metacontrast masking as a function of mask energy. Bull Psychon Soc 12:50–52CrossRef Breitmeyer BG (1978b) Metacontrast masking as a function of mask energy. Bull Psychon Soc 12:50–52CrossRef
go back to reference Breitmeyer BG, Ogmen H (2000) Recent models and findings in visual backward masking: a comparison, review, and update. Percept Psychophys 62:1572–1595PubMedCrossRef Breitmeyer BG, Ogmen H (2000) Recent models and findings in visual backward masking: a comparison, review, and update. Percept Psychophys 62:1572–1595PubMedCrossRef
go back to reference Breitmeyer BG, Ogmen H (2006) Visual masking: time slices through conscious and unconscious vision, 2nd edn. Oxford University Press, Oxford, UKCrossRef Breitmeyer BG, Ogmen H (2006) Visual masking: time slices through conscious and unconscious vision, 2nd edn. Oxford University Press, Oxford, UKCrossRef
go back to reference Breitmeyer BG, Ogmen H, Chen J (2004) Unconscious priming by color and form: different processes and levels. Conscious Cogn 13:138–157PubMedCrossRef Breitmeyer BG, Ogmen H, Chen J (2004) Unconscious priming by color and form: different processes and levels. Conscious Cogn 13:138–157PubMedCrossRef
go back to reference Breitmeyer BG, Kafalıgönül H, Öğmen H, Mardon L, Todd S, Ziegler R (2006) Meta- and paracontrast reveal differences between contour and brightness processing mechanisms. Vis Res 46:2645–2658PubMedCrossRef Breitmeyer BG, Kafalıgönül H, Öğmen H, Mardon L, Todd S, Ziegler R (2006) Meta- and paracontrast reveal differences between contour and brightness processing mechanisms. Vis Res 46:2645–2658PubMedCrossRef
go back to reference Breitmeyer BG, Tapia E, Kafalıgönül H, Öğmen H (2008) Metacontrast masking and stimulus contrast polarity. Vis Res 48:2433–2438PubMedCrossRef Breitmeyer BG, Tapia E, Kafalıgönül H, Öğmen H (2008) Metacontrast masking and stimulus contrast polarity. Vis Res 48:2433–2438PubMedCrossRef
go back to reference Bridgeman B (1988) Visual evoked potentials: concomitants of metacontrast in late components. Percept Psychophys 43:401–403PubMedCrossRef Bridgeman B (1988) Visual evoked potentials: concomitants of metacontrast in late components. Percept Psychophys 43:401–403PubMedCrossRef
go back to reference Cecere R, Gross J, Willis A, Thut G (2017) Being first matters: topographical representational similarity analysis of ERP signals reveals separate networks for audiovisual temporal binding depending on the leading sense. J Neurosci 37(21):5274–5287PubMedPubMedCentralCrossRef Cecere R, Gross J, Willis A, Thut G (2017) Being first matters: topographical representational similarity analysis of ERP signals reveals separate networks for audiovisual temporal binding depending on the leading sense. J Neurosci 37(21):5274–5287PubMedPubMedCentralCrossRef
go back to reference Del Cul A, Baillet S, Dehaene S (2007) Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol 5:2408–2423 Del Cul A, Baillet S, Dehaene S (2007) Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol 5:2408–2423
go back to reference Donchin E, Wicke JD, Lindsley DB (1963) Cortical evoked potentials and perception of paired flashes. Science 141(3587):1285–1286PubMedCrossRef Donchin E, Wicke JD, Lindsley DB (1963) Cortical evoked potentials and perception of paired flashes. Science 141(3587):1285–1286PubMedCrossRef
go back to reference Dow BM (1974) Functional classes of cells and their laminar distribution in monkey visual cortex. J Neurophysiol 37:927–946PubMedCrossRef Dow BM (1974) Functional classes of cells and their laminar distribution in monkey visual cortex. J Neurophysiol 37:927–946PubMedCrossRef
go back to reference Fahrenfort JJ, Scholte HS, Lamme VAF (2007) Masking disrupts reentrant processing in human visual cortex. J Cogn Neurosci 19:1488–1497PubMedCrossRef Fahrenfort JJ, Scholte HS, Lamme VAF (2007) Masking disrupts reentrant processing in human visual cortex. J Cogn Neurosci 19:1488–1497PubMedCrossRef
go back to reference Förster J, Koivisto M, Revonsuo A (2020) ERP and MEG correlates of visual consciousness: the second decade. Conscious Cogn 80:102917PubMedCrossRef Förster J, Koivisto M, Revonsuo A (2020) ERP and MEG correlates of visual consciousness: the second decade. Conscious Cogn 80:102917PubMedCrossRef
go back to reference Growney R, Weisstein N (1972) Spatial characteristics of metacontrast. J Opt Soc Am 62(5):690–696PubMedCrossRef Growney R, Weisstein N (1972) Spatial characteristics of metacontrast. J Opt Soc Am 62(5):690–696PubMedCrossRef
go back to reference Haynes J-D, Driver J, Rees G (2005) Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46:811–821PubMedCrossRef Haynes J-D, Driver J, Rees G (2005) Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46:811–821PubMedCrossRef
go back to reference Jansen M, Jin J, Li X, Lashgari R, Kremkow J, Bereshpolova Y, Swadlow HA, Zaidi Q, Alonso JM (2019) Cortical balance between ON and OFF visual responses is modulated by the spatial properties of the visual stimulus. Cereb Cortex 29(1):336–355PubMedCrossRef Jansen M, Jin J, Li X, Lashgari R, Kremkow J, Bereshpolova Y, Swadlow HA, Zaidi Q, Alonso JM (2019) Cortical balance between ON and OFF visual responses is modulated by the spatial properties of the visual stimulus. Cereb Cortex 29(1):336–355PubMedCrossRef
go back to reference Jeffreys DA, Musselwhite MJ (1986) A visual evoked potential study of metacontrast masking. Vis Res 26:631–642PubMedCrossRef Jeffreys DA, Musselwhite MJ (1986) A visual evoked potential study of metacontrast masking. Vis Res 26:631–642PubMedCrossRef
go back to reference Kafaligönül H, Breitmeyer BG, Öğmen H (2009) Effects of contrast polarity in paracontrast masking. Atten Percept Psychophys 71(7):1576–1587PubMedCrossRef Kafaligönül H, Breitmeyer BG, Öğmen H (2009) Effects of contrast polarity in paracontrast masking. Atten Percept Psychophys 71(7):1576–1587PubMedCrossRef
go back to reference Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 83(8):2755–2757PubMedPubMedCentralCrossRef Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 83(8):2755–2757PubMedPubMedCentralCrossRef
go back to reference Kaya U, Kafaligonul H (2019) Cortical processes underlying the effects of static sound timing on perceived visual speed. Neuroimage 199:194–205PubMedCrossRef Kaya U, Kafaligonul H (2019) Cortical processes underlying the effects of static sound timing on perceived visual speed. Neuroimage 199:194–205PubMedCrossRef
go back to reference Kleiner M, Brainard D, Pelli D (2007) What’s new in Psychtoolbox-3? Perception 36(14):1–16 Kleiner M, Brainard D, Pelli D (2007) What’s new in Psychtoolbox-3? Perception 36(14):1–16
go back to reference Koivisto M, Grassini S (2016) Neural processing around 200 ms after stimulus-onset correlates with subjective visual awareness. Neuropsychologia 84:235–243PubMedCrossRef Koivisto M, Grassini S (2016) Neural processing around 200 ms after stimulus-onset correlates with subjective visual awareness. Neuropsychologia 84:235–243PubMedCrossRef
go back to reference Koivisto M, Revonsuo A (2010) Event-related brain potential correlates of visual awareness. Neurosci Biobehav Rev 34:922–934PubMedCrossRef Koivisto M, Revonsuo A (2010) Event-related brain potential correlates of visual awareness. Neurosci Biobehav Rev 34:922–934PubMedCrossRef
go back to reference Komban SJ, Kremkow J, Jin J, Wang Y, Lashgari R, Li X, Zaidi Q, Alonso JM (2014) Neuronal and perceptual differences in the temporal processing of darks and lights. Neuron 82:224–234PubMedPubMedCentralCrossRef Komban SJ, Kremkow J, Jin J, Wang Y, Lashgari R, Li X, Zaidi Q, Alonso JM (2014) Neuronal and perceptual differences in the temporal processing of darks and lights. Neuron 82:224–234PubMedPubMedCentralCrossRef
go back to reference Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579PubMedCrossRef Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579PubMedCrossRef
go back to reference Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190PubMedCrossRef Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190PubMedCrossRef
go back to reference Norcia AM, Yakovleva A, Hung B, Goldberg JL (2020) Dynamics of contrast decrement and increment responses in human visual cortex. Transl Vis Sci Technol 9(10):6PubMedPubMedCentralCrossRef Norcia AM, Yakovleva A, Hung B, Goldberg JL (2020) Dynamics of contrast decrement and increment responses in human visual cortex. Transl Vis Sci Technol 9(10):6PubMedPubMedCentralCrossRef
go back to reference Ogmen H, Breitmeyer BG, Melvin R (2003) The what and where in visual masking. Vis Res 43:1337–1350PubMedCrossRef Ogmen H, Breitmeyer BG, Melvin R (2003) The what and where in visual masking. Vis Res 43:1337–1350PubMedCrossRef
go back to reference Oluk C, Pavan A, Kafaligonul H (2016) Rapid motion adaptation reveals the temporal dynamics of spatiotemporal correlation between ON and OFF pathways. Sci Rep 6:34073PubMedPubMedCentralCrossRef Oluk C, Pavan A, Kafaligonul H (2016) Rapid motion adaptation reveals the temporal dynamics of spatiotemporal correlation between ON and OFF pathways. Sci Rep 6:34073PubMedPubMedCentralCrossRef
go back to reference Pelli D (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442PubMedCrossRef Pelli D (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442PubMedCrossRef
go back to reference Pitts MA, Padwal J, Fennelly D, Martínez A, Hillyard SA (2014) Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. Neuroimage 101:337–350PubMedCrossRef Pitts MA, Padwal J, Fennelly D, Martínez A, Hillyard SA (2014) Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. Neuroimage 101:337–350PubMedCrossRef
go back to reference Railo H, Koivisto M (2009) The electrophysiological correlates of stimulus visibility and metacontrast masking. Conscious Cogn 18:794–803PubMedCrossRef Railo H, Koivisto M (2009) The electrophysiological correlates of stimulus visibility and metacontrast masking. Conscious Cogn 18:794–803PubMedCrossRef
go back to reference Rieger JW, Braun C, Bülthoff HH, Gegenfurtner KR (2005) The dynamics of visual pattern masking in natural scene processing: a magnetoencephalography study. J Vis 5(3):275–286PubMedCrossRef Rieger JW, Braun C, Bülthoff HH, Gegenfurtner KR (2005) The dynamics of visual pattern masking in natural scene processing: a magnetoencephalography study. J Vis 5(3):275–286PubMedCrossRef
go back to reference Roveri L, Demarco PJ, Celesia GG (1997) An electrophysiological metric of activity within the ON- and OFF-pathways in humans. Vis Res 37:669–674PubMedCrossRef Roveri L, Demarco PJ, Celesia GG (1997) An electrophysiological metric of activity within the ON- and OFF-pathways in humans. Vis Res 37:669–674PubMedCrossRef
go back to reference Schiller PH (1982) Central connections to the ON- and OFF-pathways. Nature 297:1288–1374 Schiller PH (1982) Central connections to the ON- and OFF-pathways. Nature 297:1288–1374
go back to reference Schiller P, Chorover L (1966) Metacontrast: its relation to evoked potentials. Science 153:1398–1400PubMedCrossRef Schiller P, Chorover L (1966) Metacontrast: its relation to evoked potentials. Science 153:1398–1400PubMedCrossRef
go back to reference Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single cell properties in monkey striate cortex. I–V. J Neurophysiol 39:1288–1374PubMedCrossRef Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single cell properties in monkey striate cortex. I–V. J Neurophysiol 39:1288–1374PubMedCrossRef
go back to reference Sherrick MF, Keating JK, Dember WN (1974) Metacontrast with black and white stimuli. Can J Psychol 28:438–445PubMedCrossRef Sherrick MF, Keating JK, Dember WN (1974) Metacontrast with black and white stimuli. Can J Psychol 28:438–445PubMedCrossRef
go back to reference Sterkin A, Yehezkel O, Bonneh YS, Norcia A, Polat U (2009) Backward masking suppresses collinear facilitation in the visual cortex. Vis Res 49:1784–1794PubMedCrossRef Sterkin A, Yehezkel O, Bonneh YS, Norcia A, Polat U (2009) Backward masking suppresses collinear facilitation in the visual cortex. Vis Res 49:1784–1794PubMedCrossRef
go back to reference Stewart AL, Purcell DG (1974) Visual backward masking by a flash of light: a study of u-shaped detection functions. J Exp Psychol 103(3):553–566PubMedCrossRef Stewart AL, Purcell DG (1974) Visual backward masking by a flash of light: a study of u-shaped detection functions. J Exp Psychol 103(3):553–566PubMedCrossRef
go back to reference Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:e879716CrossRef Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:e879716CrossRef
go back to reference Thaler L, Schütz AC, Goodale MA, Gegenfurtner KR (2013) What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vis Res 76:31–42PubMedCrossRef Thaler L, Schütz AC, Goodale MA, Gegenfurtner KR (2013) What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vis Res 76:31–42PubMedCrossRef
go back to reference Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35(2):135–140PubMedCrossRef Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35(2):135–140PubMedCrossRef
go back to reference Van Aalderen-Smeets SI, Oostenveld R, Schwarzbach J (2006) Investigating neurophysiological correlates of metacontrast masking with magnetoencephalography. Adv Cogn Psychol 2:21–35CrossRef Van Aalderen-Smeets SI, Oostenveld R, Schwarzbach J (2006) Investigating neurophysiological correlates of metacontrast masking with magnetoencephalography. Adv Cogn Psychol 2:21–35CrossRef
go back to reference Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203(4943):380–384CrossRefPubMed Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203(4943):380–384CrossRefPubMed
go back to reference World Medical Association (2013) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194CrossRef World Medical Association (2013) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194CrossRef
go back to reference Wutz A, Melcher D, Samaha J (2018) Frequency modulation of neural oscillations according to visual task demands. Proc Natl Acad Sci USA 115:1346–1351PubMedPubMedCentralCrossRef Wutz A, Melcher D, Samaha J (2018) Frequency modulation of neural oscillations according to visual task demands. Proc Natl Acad Sci USA 115:1346–1351PubMedPubMedCentralCrossRef
go back to reference Zemon V, Gordon J (2006) Luminance-contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vis Res 46:4163–4180PubMedCrossRef Zemon V, Gordon J (2006) Luminance-contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vis Res 46:4163–4180PubMedCrossRef
go back to reference Zemon V, Gordon J, Welch J (1988) Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis Neurosci 1:145–150PubMedCrossRef Zemon V, Gordon J, Welch J (1988) Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis Neurosci 1:145–150PubMedCrossRef
Metadata
Title
Neural correlates of metacontrast masking across different contrast polarities
Authors
Alaz Aydin
Haluk Ogmen
Hulusi Kafaligonul
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2021
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02260-5

Other articles of this Issue 9/2021

Brain Structure and Function 9/2021 Go to the issue