Skip to main content
Top
Published in: Brain Structure and Function 4/2020

Open Access 01-05-2020 | Editorial

Perspectives given by structural connectivity bridge the gap between structure and function

Authors: Hiromasa Takemura, Michel Thiebaut de Schotten

Published in: Brain Structure and Function | Issue 4/2020

Login to get access

Excerpt

“Afferent, efferent and intrinsic connections, as well as cell types and their properties, are the structural basis of a brain region's function” (Zilles and Amunts 2015). Over the last several decades, neuroscience has made enormous progress in understanding brain-function mechanisms at different spatial scales, ranging from the single-neuron level to macroscale cortical maps. While some reports demonstrate that a function can be localised into a specific area (localisationism), a collection of neuroscience studies also indicate that functions are mediated through the interaction of multiple brain areas. We will argue that extreme localisationism thinking has lost perspective. While areas can be sensitive to specific functions, they are not independently processing the information. For instance, reading this text requires the involvement of a system of interconnected brain areas analysing visual words and phonological and lexical information (Wandell et al. 2012). Hence, there is a pressing need to understand ‘structural connectivity’, which is a term generally referring to anatomical connections between brain areas. Structural connectivity is essential in understanding the circuitry supporting the interaction between brain areas and in bridging anatomy with function. …
Literature
go back to reference Axer M, Amunts K, Grässel D et al (2011) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. Neuroimage 54:1091–1101CrossRef Axer M, Amunts K, Grässel D et al (2011) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. Neuroimage 54:1091–1101CrossRef
go back to reference Bakker R, Wachtler T, Diesmann M (2012) CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinform 6:30CrossRef Bakker R, Wachtler T, Diesmann M (2012) CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinform 6:30CrossRef
go back to reference Bargmann CI, Marder E (2013) From the connectome to brain function. Nat Methods 10:483–490CrossRef Bargmann CI, Marder E (2013) From the connectome to brain function. Nat Methods 10:483–490CrossRef
go back to reference Caspers S, Axer M (2019) Decoding the microstructural correlate of diffusion MRI. NMR Biomed 32:e3779CrossRef Caspers S, Axer M (2019) Decoding the microstructural correlate of diffusion MRI. NMR Biomed 32:e3779CrossRef
go back to reference Catani M, Allin MPG, Husain M et al (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci U S A 104:17163–17168CrossRef Catani M, Allin MPG, Husain M et al (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci U S A 104:17163–17168CrossRef
go back to reference Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10:508–513CrossRef Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10:508–513CrossRef
go back to reference Forkel SJ, Rogalski E, Drossinos Sancho N et al (2020) Anatomical evidence of an indirect pathway for word repetition. Neurology 94:e594–e606CrossRef Forkel SJ, Rogalski E, Drossinos Sancho N et al (2020) Anatomical evidence of an indirect pathway for word repetition. Neurology 94:e594–e606CrossRef
go back to reference Forkel SJ, Thiebaut de Schotten M (2020) Towards metabolic disconnection—symptom mapping. Brain 143:718–721CrossRef Forkel SJ, Thiebaut de Schotten M (2020) Towards metabolic disconnection—symptom mapping. Brain 143:718–721CrossRef
go back to reference Forkel SJ, Thiebaut de Schotten M, Dell’Acqua F et al (2014) Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain 137:2027–2039CrossRef Forkel SJ, Thiebaut de Schotten M, Dell’Acqua F et al (2014) Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain 137:2027–2039CrossRef
go back to reference Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488CrossRef Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488CrossRef
go back to reference Huber E, Donnelly PM, Rokem A, Yeatman JD (2018) Rapid and widespread white matter plasticity during an intensive reading intervention. Nat Commun 9:2260CrossRef Huber E, Donnelly PM, Rokem A, Yeatman JD (2018) Rapid and widespread white matter plasticity during an intensive reading intervention. Nat Commun 9:2260CrossRef
go back to reference Majka P, Bai S, Bakola S et al (2020) Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 11:1133CrossRef Majka P, Bai S, Bakola S et al (2020) Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 11:1133CrossRef
go back to reference Oh SW, Harris JA, Ng L et al (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214CrossRef Oh SW, Harris JA, Ng L et al (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214CrossRef
go back to reference Oishi H, Takemura H, Aoki SC et al (2018) Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proc Natl Acad Sci USA 115:12289–12294CrossRef Oishi H, Takemura H, Aoki SC et al (2018) Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proc Natl Acad Sci USA 115:12289–12294CrossRef
go back to reference Schmahmann JD, Pandya D (2006) Fiber Pathways of the Brain. Oxford Univ Press, New YorkCrossRef Schmahmann JD, Pandya D (2006) Fiber Pathways of the Brain. Oxford Univ Press, New YorkCrossRef
go back to reference Takemura H, Ogawa S, Mezer AA et al (2019) Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. Neuroimage Clin 23:101826CrossRef Takemura H, Ogawa S, Mezer AA et al (2019) Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. Neuroimage Clin 23:101826CrossRef
go back to reference Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ et al (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246CrossRef Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ et al (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246CrossRef
go back to reference Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn Human Connectome Project: an overview. Neuroimage 80:62–79CrossRef Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn Human Connectome Project: an overview. Neuroimage 80:62–79CrossRef
go back to reference Wandell BA, Rauschecker AM, Yeatman JD (2012) Learning to see words. Annu Rev Psychol 63:31–53CrossRef Wandell BA, Rauschecker AM, Yeatman JD (2012) Learning to see words. Annu Rev Psychol 63:31–53CrossRef
go back to reference Wang H, Magnain C, Wang R et al (2018) as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity. Neuroimage 165:56–68CrossRef Wang H, Magnain C, Wang R et al (2018) as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity. Neuroimage 165:56–68CrossRef
go back to reference Wassie AT, Zhao Y, Boyden ES (2019) Expansion microscopy: principles and uses in biological research. Nat Methods 16:33–41CrossRef Wassie AT, Zhao Y, Boyden ES (2019) Expansion microscopy: principles and uses in biological research. Nat Methods 16:33–41CrossRef
go back to reference Zilles K, Amunts K (2015) Anatomical basis for functional specialization. In: Uludağ K, Uğurbil K, Berliner L (eds) fMRI: From Nuclear Spins to Brain Functions, vol. 1. Springer, New York, pp 27–66CrossRef Zilles K, Amunts K (2015) Anatomical basis for functional specialization. In: Uludağ K, Uğurbil K, Berliner L (eds) fMRI: From Nuclear Spins to Brain Functions, vol. 1. Springer, New York, pp 27–66CrossRef
go back to reference Zingg B, Hintiryan H, Gou L et al (2014) Neural Networks of the Mouse Neocortex. Cell 156:1096–1111CrossRef Zingg B, Hintiryan H, Gou L et al (2014) Neural Networks of the Mouse Neocortex. Cell 156:1096–1111CrossRef
Metadata
Title
Perspectives given by structural connectivity bridge the gap between structure and function
Authors
Hiromasa Takemura
Michel Thiebaut de Schotten
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2020
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-020-02080-z

Other articles of this Issue 4/2020

Brain Structure and Function 4/2020 Go to the issue