Skip to main content
Top
Published in: Brain Structure and Function 3/2019

01-04-2019 | Pathology | Review

The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex

Authors: Miguel Ángel García-Cabezas, Basilis Zikopoulos, Helen Barbas

Published in: Brain Structure and Function | Issue 3/2019

Login to get access

Abstract

The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices—which form a ring at the base of the cerebral hemisphere—are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.
Literature
go back to reference Abbie AA (1940) Cortical lamination in the monotremata. J Comp Neurol 72:429–467CrossRef Abbie AA (1940) Cortical lamination in the monotremata. J Comp Neurol 72:429–467CrossRef
go back to reference Abbie AA (1942) Cortical lamination in a polyprotodont marsupial, perameles nasuta. J Comp Neurol 76:509–536CrossRef Abbie AA (1942) Cortical lamination in a polyprotodont marsupial, perameles nasuta. J Comp Neurol 76:509–536CrossRef
go back to reference Allman J (2000) Evolving brains. Scientific American Library, New York Allman J (2000) Evolving brains. Scientific American Library, New York
go back to reference Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Macmillan, New York Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Macmillan, New York
go back to reference Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116CrossRefPubMed Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116CrossRefPubMed
go back to reference Badre D, D’Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19(12):2082–2099CrossRefPubMed Badre D, D’Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19(12):2082–2099CrossRefPubMed
go back to reference Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana
go back to reference Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422CrossRefPubMed Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422CrossRefPubMed
go back to reference Barbas H (1988) Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276:313–342CrossRefPubMed Barbas H (1988) Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276:313–342CrossRefPubMed
go back to reference Barbas H (1995) Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev 19:499–510CrossRefPubMed Barbas H (1995) Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev 19:499–510CrossRefPubMed
go back to reference Barbas H (2015) General Cortical and special Prefrontal Connections: Principles from Structure to Function. Annu Rev Neurosci 38:269–289CrossRefPubMed Barbas H (2015) General Cortical and special Prefrontal Connections: Principles from Structure to Function. Annu Rev Neurosci 38:269–289CrossRefPubMed
go back to reference Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211–218CrossRefPubMed Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211–218CrossRefPubMed
go back to reference Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286(3):353–375CrossRefPubMed Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286(3):353–375CrossRefPubMed
go back to reference Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7:635–646CrossRefPubMed Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7:635–646CrossRefPubMed
go back to reference Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL (1999) Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410:343–367CrossRefPubMed Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL (1999) Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410:343–367CrossRefPubMed
go back to reference Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005a) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6(1):32CrossRefPubMedPubMedCentral Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005a) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6(1):32CrossRefPubMedPubMedCentral
go back to reference Barbas H, Medalla M, Alade O, Suski J, Zikopoulos B, Lera P (2005b) Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. Cereb Cortex 15(9):1356–1370CrossRefPubMed Barbas H, Medalla M, Alade O, Suski J, Zikopoulos B, Lera P (2005b) Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. Cereb Cortex 15(9):1356–1370CrossRefPubMed
go back to reference Barbas H, Wang J, Joyce MKP, García-Cabezas MA (2018) Pathway mechanism for excitatory and inhibitory control in working memory. J Neurophysiol 120:2659–2678CrossRefPubMedPubMedCentral Barbas H, Wang J, Joyce MKP, García-Cabezas MA (2018) Pathway mechanism for excitatory and inhibitory control in working memory. J Neurophysiol 120:2659–2678CrossRefPubMedPubMedCentral
go back to reference Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84–91CrossRefPubMed Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84–91CrossRefPubMed
go back to reference Braak H (1980) Architectonics of the human telencephalic cortex. Studies of brain function, vol 4. Springer, Berlin; New YorkCrossRef Braak H (1980) Architectonics of the human telencephalic cortex. Studies of brain function, vol 4. Springer, Berlin; New YorkCrossRef
go back to reference Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K (2006) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Movem Disord 21(12):2042–2051. https://doi.org/10.1002/mds.21065 CrossRef Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K (2006) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Movem Disord 21(12):2042–2051. https://​doi.​org/​10.​1002/​mds.​21065 CrossRef
go back to reference Broca P (1878) Anatomie comparée des circonvolutions cérébrales: Le grand lobe limbique et la scissure limbique dans la série des mammifères. Revue D’anthropologie 1:385–498 Broca P (1878) Anatomie comparée des circonvolutions cérébrales: Le grand lobe limbique et la scissure limbique dans la série des mammifères. Revue D’anthropologie 1:385–498
go back to reference Brodmann KG (1909/1999) Brodmann’s Localisation in the Cerebral Cortex. Translated from German by Laurence J. Imperial College Press, London Brodmann KG (1909/1999) Brodmann’s Localisation in the Cerebral Cortex. Translated from German by Laurence J. Imperial College Press, London
go back to reference Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: boulder committee revisited. NatRevNeurosci 9(2):110–122 Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: boulder committee revisited. NatRevNeurosci 9(2):110–122
go back to reference Campbell AW (1905) Histological studies on the localisation of cerebral function. University Press, Cambridge Campbell AW (1905) Histological studies on the localisation of cerebral function. University Press, Cambridge
go back to reference Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205CrossRefPubMed Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205CrossRefPubMed
go back to reference Darwin C (1859) On the origin of species by means of natural selection: or, The preservation of favoured races in the struggle for life. John Murray, Albemarle Street, London Darwin C (1859) On the origin of species by means of natural selection: or, The preservation of favoured races in the struggle for life. John Murray, Albemarle Street, London
go back to reference del Río-Hortega P (1934/1962) The microscopic anatomy of tumors of the central and peripheral nervous system. Thomas, Springfield, Ill. del Río-Hortega P (1934/1962) The microscopic anatomy of tumors of the central and peripheral nervous system. Thomas, Springfield, Ill.
go back to reference Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA, Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N, Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van der Kouwe A, Varjabedian A, Wright M, Zollei L, Dang C, Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P, Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ, Hof PR, Fischl B, Lein ES (2016) Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 524(16):3127–3481. https://doi.org/10.1002/cne.24080 CrossRefPubMedPubMedCentral Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA, Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N, Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van der Kouwe A, Varjabedian A, Wright M, Zollei L, Dang C, Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P, Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ, Hof PR, Fischl B, Lein ES (2016) Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 524(16):3127–3481. https://​doi.​org/​10.​1002/​cne.​24080 CrossRefPubMedPubMedCentral
go back to reference Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988CrossRefPubMed Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988CrossRefPubMed
go back to reference Duyckaerts C, Colle MA, Dessi F, Piette F, Hauw JJ (1998) Progression of Alzheimer histopathological changes. Acta neurologica Belgica 98(2):180–185PubMed Duyckaerts C, Colle MA, Dessi F, Piette F, Hauw JJ (1998) Progression of Alzheimer histopathological changes. Acta neurologica Belgica 98(2):180–185PubMed
go back to reference Elston GN (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13(11):1124–1138CrossRefPubMed Elston GN (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13(11):1124–1138CrossRefPubMed
go back to reference Elston GN, Benavides-Piccione R, DeFelipe J (2005) A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. Cereb Cortex 15(1):64–73CrossRefPubMed Elston GN, Benavides-Piccione R, DeFelipe J (2005) A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. Cereb Cortex 15(1):64–73CrossRefPubMed
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
go back to reference Filimonoff IN (1947) A rational subdivision of the cerebral cortex. Arch Neurol Psychiat 58:296–311CrossRefPubMed Filimonoff IN (1947) A rational subdivision of the cerebral cortex. Arch Neurol Psychiat 58:296–311CrossRefPubMed
go back to reference Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610CrossRefPubMed Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610CrossRefPubMed
go back to reference Garcia-Cabezas MA, Joyce MP, John Y, Zikopoulos B, Barbas H (2017) Mirror trends of plasticity and stability indicators in primate prefrontal cortex. Eur J Neurosci 46(8):2392–2405CrossRefPubMedPubMedCentral Garcia-Cabezas MA, Joyce MP, John Y, Zikopoulos B, Barbas H (2017) Mirror trends of plasticity and stability indicators in primate prefrontal cortex. Eur J Neurosci 46(8):2392–2405CrossRefPubMedPubMedCentral
go back to reference Gloor P, Olivier A, Quesney LF, Andermann F, Horowitz S (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12:129–144CrossRefPubMed Gloor P, Olivier A, Quesney LF, Andermann F, Horowitz S (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12:129–144CrossRefPubMed
go back to reference Grant S, Hilgetag CC (2005) Graded classes of cortical connections: quantitative analyses of laminar projections to motion areas of cat extrastriate cortex. Eur J Neurosci 22(3):681–696CrossRefPubMedPubMedCentral Grant S, Hilgetag CC (2005) Graded classes of cortical connections: quantitative analyses of laminar projections to motion areas of cat extrastriate cortex. Eur J Neurosci 22(3):681–696CrossRefPubMedPubMedCentral
go back to reference He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419CrossRefPubMed He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419CrossRefPubMed
go back to reference Hof PR, Mufson EJ, Morrison JH (1995) Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation. J Comp Neurol 359:48–68CrossRefPubMed Hof PR, Mufson EJ, Morrison JH (1995) Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation. J Comp Neurol 359:48–68CrossRefPubMed
go back to reference Hubel DH (1988) Eye, brain, and vision. Scientific American Library series, vol no 22. Scientific American Library: Distributed by W.H. Freeman, New York Hubel DH (1988) Eye, brain, and vision. Scientific American Library series, vol no 22. Scientific American Library: Distributed by W.H. Freeman, New York
go back to reference Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820CrossRefPubMed Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820CrossRefPubMed
go back to reference Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol 281(1):1148–1156CrossRefPubMed Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol 281(1):1148–1156CrossRefPubMed
go back to reference Kapfhammer JP, Schwab ME (1994) Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity? J Comp Neurol 340(2):194–206CrossRefPubMed Kapfhammer JP, Schwab ME (1994) Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity? J Comp Neurol 340(2):194–206CrossRefPubMed
go back to reference Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171(2):157–191CrossRefPubMed Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171(2):157–191CrossRefPubMed
go back to reference Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47(3):353–364CrossRefPubMedPubMedCentral Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47(3):353–364CrossRefPubMedPubMedCentral
go back to reference Lukaszewicz A, Cortay V, Giroud P, Berland M, Smart I, Kennedy H, Dehay C (2006) The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb Cortex 16(Suppl 1):i26–i34CrossRefPubMed Lukaszewicz A, Cortay V, Giroud P, Berland M, Smart I, Kennedy H, Dehay C (2006) The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb Cortex 16(Suppl 1):i26–i34CrossRefPubMed
go back to reference Maunsell JHR, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586CrossRefPubMedPubMedCentral Maunsell JHR, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586CrossRefPubMedPubMedCentral
go back to reference Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660CrossRefPubMed Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660CrossRefPubMed
go back to reference Medalla M, Barbas H (2006) Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. Eur J Neurosci 23(1):161–179CrossRefPubMed Medalla M, Barbas H (2006) Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. Eur J Neurosci 23(1):161–179CrossRefPubMed
go back to reference Mesulam MM (1985) Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (ed) Principles of behavioral neurology. F. A. Davis Company, Philadelphia, pp 1–70 Mesulam MM (1985) Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (ed) Principles of behavioral neurology. F. A. Davis Company, Philadelphia, pp 1–70
go back to reference Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. I: Architectonics in the insulo- orbito-temporal component of the paralimbic brain. J Comp Neurol 212:1–22CrossRefPubMed Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. I: Architectonics in the insulo- orbito-temporal component of the paralimbic brain. J Comp Neurol 212:1–22CrossRefPubMed
go back to reference Morgane PJ, Glezer II, Jacobs MS (1990) Comparative and evolutionary anatomy of the visual cortex of the dolphin. Cereb Cortex 8B:215–262CrossRef Morgane PJ, Glezer II, Jacobs MS (1990) Comparative and evolutionary anatomy of the visual cortex of the dolphin. Cereb Cortex 8B:215–262CrossRef
go back to reference Nieuwenhuys R, Puelles L (2016) Towards a new neuromorphology. Springer, BerlinCrossRef Nieuwenhuys R, Puelles L (2016) Towards a new neuromorphology. Springer, BerlinCrossRef
go back to reference Nimchinsky EA, Hof PR, Young WG, Morrison JH (1996) Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey. J Comp Neurol 374:136–160CrossRefPubMed Nimchinsky EA, Hof PR, Young WG, Morrison JH (1996) Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey. J Comp Neurol 374:136–160CrossRefPubMed
go back to reference Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, Haeussler M, Sandoval-Espinosa C, Liu SJ, Velmeshev D, Ounadjela JR, Shuga J, Wang X, Lim DA, West JA, Leyrat AA, Kent WJ, Kriegstein AR (2017) Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358(6368):1318–1323. https://doi.org/10.1126/science.aap8809 CrossRefPubMedPubMedCentral Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, Haeussler M, Sandoval-Espinosa C, Liu SJ, Velmeshev D, Ounadjela JR, Shuga J, Wang X, Lim DA, West JA, Leyrat AA, Kent WJ, Kriegstein AR (2017) Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358(6368):1318–1323. https://​doi.​org/​10.​1126/​science.​aap8809 CrossRefPubMedPubMedCentral
go back to reference Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. ZAnatEntwickl-Gesch 139:127–161CrossRef Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. ZAnatEntwickl-Gesch 139:127–161CrossRef
go back to reference Pandya DN, Barbas H, Golberg G (1985) Architecture and connections of the premotor areas in the rhesus monkey [Commentary to Supplementary motor area structure and function: Review and hypotheses, Golberg G (1985); Behav Brain Sci, 8: 567-616]. Behav Brain Sci 8:595–596CrossRef Pandya DN, Barbas H, Golberg G (1985) Architecture and connections of the premotor areas in the rhesus monkey [Commentary to Supplementary motor area structure and function: Review and hypotheses, Golberg G (1985); Behav Brain Sci, 8: 567-616]. Behav Brain Sci 8:595–596CrossRef
go back to reference Pandya DN, Seltzer B, Barbas H (1988) Input-output organization of the primate cerebral cortex. In: Steklis HD, Erwin J (eds) Comparative primate biology, vol 4. Neurosciences, Alan R. Liss, New York (NY), pp 39–80 Pandya DN, Seltzer B, Barbas H (1988) Input-output organization of the primate cerebral cortex. In: Steklis HD, Erwin J (eds) Comparative primate biology, vol 4. Neurosciences, Alan R. Liss, New York (NY), pp 39–80
go back to reference Pandya D, Seltzer B, Petrides M, Cipolloni PB (2015) Cerebral cortex: architecture, connections, and the dual origin concept. Oxford University Press, New YorkCrossRef Pandya D, Seltzer B, Petrides M, Cipolloni PB (2015) Cerebral cortex: architecture, connections, and the dual origin concept. Oxford University Press, New YorkCrossRef
go back to reference Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown and Company, BostonCrossRef Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown and Company, BostonCrossRef
go back to reference Popper KR (1959) The logic of scientific discovery. Basic Books, New York Popper KR (1959) The logic of scientific discovery. Basic Books, New York
go back to reference Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–426CrossRefPubMed Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–426CrossRefPubMed
go back to reference Rakic P (1976a) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471CrossRefPubMed Rakic P (1976a) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471CrossRefPubMed
go back to reference Rakic P (1976b) Differences in the time of origin and in eventual distribution of neurons in areas 17 and 18 of visual cortex in rhesus monkey. Exp Brain Res Suppl 1:244–248 Rakic P (1976b) Differences in the time of origin and in eventual distribution of neurons in areas 17 and 18 of visual cortex in rhesus monkey. Exp Brain Res Suppl 1:244–248
go back to reference Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3(1):65–71CrossRefPubMed Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3(1):65–71CrossRefPubMed
go back to reference Ramón y Cajal S (1904/2002) Textura del sistema nervioso del hombre y de los vertebrados. Tomo II, segunda parte. Gobierno de Aragón. Departamento de Cultura y Turismo, Zaragoza Ramón y Cajal S (1904/2002) Textura del sistema nervioso del hombre y de los vertebrados. Tomo II, segunda parte. Gobierno de Aragón. Departamento de Cultura y Turismo, Zaragoza
go back to reference Ramón y Cajal S (1937) Recollections of my life. Memoirs of the American philosophical society, vol VIII, pt I-II, 1937. The American philosophical society, Philadelphia Ramón y Cajal S (1937) Recollections of my life. Memoirs of the American philosophical society, vol VIII, pt I-II, 1937. The American philosophical society, Philadelphia
go back to reference Reep R (1984) Relationship between prefrontal and limbic cortex: a comparative and anatomical review. Brain Behav Evol 25:1–80CrossRef Reep R (1984) Relationship between prefrontal and limbic cortex: a comparative and anatomical review. Brain Behav Evol 25:1–80CrossRef
go back to reference Reillo I, Romero CD, García-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21(7):1674–1694CrossRefPubMed Reillo I, Romero CD, García-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21(7):1674–1694CrossRefPubMed
go back to reference Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the rhesus monkey is related to cortical structure and function. Cereb Cortex 10(9):851–865CrossRefPubMed Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the rhesus monkey is related to cortical structure and function. Cereb Cortex 10(9):851–865CrossRefPubMed
go back to reference Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20CrossRefPubMed Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20CrossRefPubMed
go back to reference Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136CrossRefPubMedPubMedCentral Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136CrossRefPubMedPubMedCentral
go back to reference Rosa MG, Casagrande VA, Preuss T, Kaas JH (1997) Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). J Neurophysiol 77:3193–3217CrossRefPubMed Rosa MG, Casagrande VA, Preuss T, Kaas JH (1997) Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). J Neurophysiol 77:3193–3217CrossRefPubMed
go back to reference Sanides F (1962) Architectonics of the human frontal lobe of the brain. With a demonstration of the principles of its formation as a reflection of phylogenetic differentiation of the cerebral cortex. Monographien aus dem Gesamtgebiete der Neurologie Psychiatrie 98:1–201CrossRef Sanides F (1962) Architectonics of the human frontal lobe of the brain. With a demonstration of the principles of its formation as a reflection of phylogenetic differentiation of the cerebral cortex. Monographien aus dem Gesamtgebiete der Neurologie Psychiatrie 98:1–201CrossRef
go back to reference Sanides F (1964) The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. J Hirnforsch 7:269–282PubMed Sanides F (1964) The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. J Hirnforsch 7:269–282PubMed
go back to reference Sanides F (1968) The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationships to insular, sensorimotor and prefrontal regions. Brain Res 8:97–124CrossRefPubMed Sanides F (1968) The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationships to insular, sensorimotor and prefrontal regions. Brain Res 8:97–124CrossRefPubMed
go back to reference Sanides F (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Noback CR, Montagna W (eds) The primate brain: advances in primatology. Appleton-Century-Crofts Educational Division/Meredith Corporation, New York (NY), pp 137–208 Sanides F (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Noback CR, Montagna W (eds) The primate brain: advances in primatology. Appleton-Century-Crofts Educational Division/Meredith Corporation, New York (NY), pp 137–208
go back to reference Sanides F (1972) Representation in the cerebral cortex and its areal lamination pattern. In: Bourne GH (ed) the structure and function of nervous tissue, vol V. Academic Press, New York & London, pp 329–453 Sanides F (1972) Representation in the cerebral cortex and its areal lamination pattern. In: Bourne GH (ed) the structure and function of nervous tissue, vol V. Academic Press, New York & London, pp 329–453
go back to reference Sanides F, Hoffmann J (1969) Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J Hirnforsch 11(1):79–104PubMed Sanides F, Hoffmann J (1969) Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J Hirnforsch 11(1):79–104PubMed
go back to reference Sanides F, Krishnamurti A (1967) Cytoarchitectonic subdivisions of sensorimotor and prefrontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang). J Hirnforsch 9:225–252PubMed Sanides F, Krishnamurti A (1967) Cytoarchitectonic subdivisions of sensorimotor and prefrontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang). J Hirnforsch 9:225–252PubMed
go back to reference Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35CrossRefPubMed Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35CrossRefPubMed
go back to reference Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12(1):37–53CrossRefPubMed Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12(1):37–53CrossRefPubMed
go back to reference Tucker DM, Brown M, Luu P, Holmes MD (2007) Discharges in ventromedial frontal cortex during absence spells. E&B 11(4):546–557 Tucker DM, Brown M, Luu P, Holmes MD (2007) Discharges in ventromedial frontal cortex during absence spells. E&B 11(4):546–557
go back to reference Ungerleider L, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586 Ungerleider L, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586
go back to reference van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131(Pt 4):987–999CrossRefPubMed van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131(Pt 4):987–999CrossRefPubMed
go back to reference Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–462 Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–462
go back to reference von Economo C (1927/2009) Cellular structure of the human cerebral cortex (Translated and edited by Lazaros C. Triarhou). Karger, Basel (Switzerland) von Economo C (1927/2009) Cellular structure of the human cerebral cortex (Translated and edited by Lazaros C. Triarhou). Karger, Basel (Switzerland)
go back to reference Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW, de Leon M, Louis LA, Cohen IL, London E, Brown WT, Wisniewski T (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119(6):755–770CrossRefPubMedPubMedCentral Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW, de Leon M, Louis LA, Cohen IL, London E, Brown WT, Wisniewski T (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119(6):755–770CrossRefPubMedPubMedCentral
go back to reference Woolsey CN (1963) Comparative studies on localization in precentral and supplementary motor areas. Int J Neurol 4:13–20PubMed Woolsey CN (1963) Comparative studies on localization in precentral and supplementary motor areas. Int J Neurol 4:13–20PubMed
go back to reference Yakovlev PI (1959) Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (holotelencephalies). J Neuropathol Exp Neurol 18(1):22–55CrossRefPubMed Yakovlev PI (1959) Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (holotelencephalies). J Neuropathol Exp Neurol 18(1):22–55CrossRefPubMed
go back to reference Zilles KJ (1985) The cortex of the rat: a stereotaxic atlas. Springer, BerlinCrossRef Zilles KJ (1985) The cortex of the rat: a stereotaxic atlas. Springer, BerlinCrossRef
Metadata
Title
The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex
Authors
Miguel Ángel García-Cabezas
Basilis Zikopoulos
Helen Barbas
Publication date
01-04-2019
Publisher
Springer Berlin Heidelberg
Keyword
Pathology
Published in
Brain Structure and Function / Issue 3/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01841-9

Other articles of this Issue 3/2019

Brain Structure and Function 3/2019 Go to the issue