Skip to main content
Top
Published in: Brain Structure and Function 6/2015

Open Access 01-11-2015 | Original Article

A predictive model of the cat cortical connectome based on cytoarchitecture and distance

Authors: Sarah F. Beul, Simon Grant, Claus C. Hilgetag

Published in: Brain Structure and Function | Issue 6/2015

Login to get access

Abstract

Information processing in the brain is strongly constrained by anatomical connectivity. However, the principles governing the organization of corticocortical connections remain elusive. Here, we tested three models of relationships between the organization of cortical structure and features of connections linking 49 areas of the cat cerebral cortex. Factors taken into account were relative cytoarchitectonic differentiation (‘structural model’), relative spatial position (‘distance model’), or relative hierarchical position (‘hierarchical model’) of the areas. Cytoarchitectonic differentiation and spatial distance (themselves uncorrelated) correlated strongly with the existence of inter-areal connections, whereas no correlation was found with relative hierarchical position. Moreover, a strong correlation was observed between patterns of laminar projection origin or termination and cytoarchitectonic differentiation. Additionally, cytoarchitectonic differentiation correlated with the absolute number of corticocortical connections formed by areas, and varied characteristically between different cortical subnetworks, including a ‘rich-club’ module of hub areas. Thus, connections between areas of the cat cerebral cortex can, to a large part, be explained by the two independent factors of relative cytoarchitectonic differentiation and spatial distance of brain regions. As both the structural and distance model were originally formulated in the macaque monkey, their applicability in another mammalian species suggests a general principle of global cortical organization.
Appendix
Available only for authorised users
Literature
go back to reference Bailey A, Ombuki-Berman B, Ventresca M (2013) Automatic inference of hierarchical graph models using genetic programming with an application to cortical networks. In: Blum C (ed) GECCO’13: Proceedings of 15th annual conference on genetic and evolutionary computation. ACM, New York, pp 893–900 Bailey A, Ombuki-Berman B, Ventresca M (2013) Automatic inference of hierarchical graph models using genetic programming with an application to cortical networks. In: Blum C (ed) GECCO’13: Proceedings of 15th annual conference on genetic and evolutionary computation. ACM, New York, pp 893–900
go back to reference Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281PubMed Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281PubMed
go back to reference Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johannes Ambrosius Barth Verlag, Leipzig Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johannes Ambrosius Barth Verlag, Leipzig
go back to reference Burns RB, Burns RA (2008) Discriminant analysis. In: Business research methods and statistics using SPSS. SAGE Publications Ltd., London, pp 589–608 Burns RB, Burns RA (2008) Discriminant analysis. In: Business research methods and statistics using SPSS. SAGE Publications Ltd., London, pp 589–608
go back to reference Costa L da F, Kaiser M, Hilgetag CC (2007) Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Syst Biol 1:16. doi: 10.1186/1752-0509-1-16 Costa L da F, Kaiser M, Hilgetag CC (2007) Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Syst Biol 1:16. doi: 10.​1186/​1752-0509-1-16
go back to reference Hassler R, Muhs-Clement K (1964) Architectonic construction of the sensomotor and parietal cortex in the cat. J Für Hirnforsch 7:377–420 Hassler R, Muhs-Clement K (1964) Architectonic construction of the sensomotor and parietal cortex in the cat. J Für Hirnforsch 7:377–420
go back to reference Heimer L, Robards MJ (1981) Neuroanatomical tract-tracing methods. Plenum Press, New YorkCrossRef Heimer L, Robards MJ (1981) Neuroanatomical tract-tracing methods. Plenum Press, New YorkCrossRef
go back to reference Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity. Neuroinformatics 2:353–360CrossRefPubMed Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity. Neuroinformatics 2:353–360CrossRefPubMed
go back to reference Hilgetag CC, Burns GAPC, O’Neill MA et al (2000a) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc B Biol Sci 355:91–110. doi:10.1098/rstb.2000.0551 CrossRef Hilgetag CC, Burns GAPC, O’Neill MA et al (2000a) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc B Biol Sci 355:91–110. doi:10.​1098/​rstb.​2000.​0551 CrossRef
go back to reference Jouve B, Rosenstiehl P, Imbert M (1998) A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cereb Cortex 8:28–39CrossRefPubMed Jouve B, Rosenstiehl P, Imbert M (1998) A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cereb Cortex 8:28–39CrossRefPubMed
go back to reference Klecka WR (1980) Discriminant analysis. SAGE Publications Ltd., London Klecka WR (1980) Discriminant analysis. SAGE Publications Ltd., London
go back to reference Nowak LG, Bullier J (1997) The timing of information transfer in the visual system. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex: extrastriate cortex in primates, vol 12. Plenum Press, New York, pp 205–233CrossRef Nowak LG, Bullier J (1997) The timing of information transfer in the visual system. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex: extrastriate cortex in primates, vol 12. Plenum Press, New York, pp 205–233CrossRef
go back to reference Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Association audit cortices. Plenum Press, New York, pp 3–61CrossRef Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Association audit cortices. Plenum Press, New York, pp 3–61CrossRef
go back to reference Petroni F, Panzeri S, Hilgetag CC et al (2001) Simultaneity of responses in a hierarchical visual network. NeuroReport 12:2753–2759CrossRefPubMed Petroni F, Panzeri S, Hilgetag CC et al (2001) Simultaneity of responses in a hierarchical visual network. NeuroReport 12:2753–2759CrossRefPubMed
go back to reference Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154PubMed Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154PubMed
go back to reference Sanides F (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Noback CR, Montagna W (eds) Primate brain. Appleton-Century-Crofts, New York, pp 137–208 Sanides F (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Noback CR, Montagna W (eds) Primate brain. Appleton-Century-Crofts, New York, pp 137–208
go back to reference Sanides F, Hoffmann J (1969) Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J Für Hirnforsch 11:79–104 Sanides F, Hoffmann J (1969) Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J Für Hirnforsch 11:79–104
go back to reference Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15:1463–1483PubMed Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15:1463–1483PubMed
go back to reference Scannell JW, Grant S, Payne BR, Baddeley R (2000) On variability in the density of corticocortical and thalamocortical connections. Philos Trans R Soc B Biol Sci 355:21CrossRef Scannell JW, Grant S, Payne BR, Baddeley R (2000) On variability in the density of corticocortical and thalamocortical connections. Philos Trans R Soc B Biol Sci 355:21CrossRef
go back to reference Schmolesky MT, Wang Y, Hanes DP et al (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278PubMed Schmolesky MT, Wang Y, Hanes DP et al (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278PubMed
go back to reference Von Economo CF (1927) Zellaufbau der Grosshirnrinde des Menschen. Springer, Berlin Von Economo CF (1927) Zellaufbau der Grosshirnrinde des Menschen. Springer, Berlin
go back to reference Von Economo CF, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin Von Economo CF, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin
go back to reference Young MP, Scannell JW, Burns GAPC, Blakemore C (1994) Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci 5:227–250CrossRefPubMed Young MP, Scannell JW, Burns GAPC, Blakemore C (1994) Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci 5:227–250CrossRefPubMed
go back to reference Zamora-López G, Zhou C, Kurths J (2009) Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos Interdiscip J Nonlinear Sci 19:015117. doi:10.1063/1.3089559 CrossRef Zamora-López G, Zhou C, Kurths J (2009) Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos Interdiscip J Nonlinear Sci 19:015117. doi:10.​1063/​1.​3089559 CrossRef
Metadata
Title
A predictive model of the cat cortical connectome based on cytoarchitecture and distance
Authors
Sarah F. Beul
Simon Grant
Claus C. Hilgetag
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0849-y

Other articles of this Issue 6/2015

Brain Structure and Function 6/2015 Go to the issue