Skip to main content
Top
Published in: Brain Structure and Function 9/2016

01-12-2016 | Original Article

The system neurophysiological basis of backward inhibition

Authors: Rui Zhang, Ann-Kathrin Stock, Rico Fischer, Christian Beste

Published in: Brain Structure and Function | Issue 9/2016

Login to get access

Abstract

Task switching is regularly required in our everyday life. To succeed in switching, it is important to inhibit the most recently performed task and instead activate the currently relevant task. The process that inhibits a recently performed task when a new task is to be performed is referred to as ‘backward inhibition’ (BI). While the BI effect has been subject to intense research in cognitive psychology, little is known about the neuronal mechanisms that are related to the BI effect and those that relate to differences in the magnitude of the BI effect. In the current study, we examined the system neurophysiological basis of BI processes using event-related potentials (ERPs) and sLORETA by also taking inter-individual differences in the magnitude of the BI into account. The results suggest that BI processes and inter-individual differences in them strongly depend upon attentional selection mechanisms (reflected by N1-ERP modulations in the current task/trial) mediated via networks consisting of extrastriate occipital areas, the temporo-parietal junction and the inferior frontal gyrus. Other processes and mechanisms related to conflict monitoring, response selection, or the updating, organization and implementation of a new task-set (i.e. N2 and P3 processes) were not shown to be modulated by BI processes and differences in their magnitude, as evoked with a common BI paradigm.
Appendix
Available only for authorised users
Literature
go back to reference Allport A, Wylie G (1999) Task-switching: positive and negative priming of task-set. In: Humphreys GW, Duncan J, Treisman AM (eds) Attention, space and action: studies in cognitive neuroscience. Oxford University Press, Oxford, pp 273–296 Allport A, Wylie G (1999) Task-switching: positive and negative priming of task-set. In: Humphreys GW, Duncan J, Treisman AM (eds) Attention, space and action: studies in cognitive neuroscience. Oxford University Press, Oxford, pp 273–296
go back to reference Allport A, Styles EA, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of task. In: Umiltà C, Moscovitch M (eds) Attention and performance XV: conscious and nonconscious information processing. MIT Press, Cambridge, pp 421–452 Allport A, Styles EA, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of task. In: Umiltà C, Moscovitch M (eds) Attention and performance XV: conscious and nonconscious information processing. MIT Press, Cambridge, pp 421–452
go back to reference Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177CrossRefPubMed Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177CrossRefPubMed
go back to reference Barceló F, Muñoz-Céspedes JM, Pozo MA, Rubia FJ (2000) Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia 38(10):1342–1355CrossRefPubMed Barceló F, Muñoz-Céspedes JM, Pozo MA, Rubia FJ (2000) Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia 38(10):1342–1355CrossRefPubMed
go back to reference Beste C, Baune BT, Falkenstein M, Konrad C (2010a) Variations in the TNF-α gene (TNF-α-308G→A) affect attention and action selection mechanisms in a dissociated fashion. J Neurophysiol 104(5):2523–2531. doi:10.1152/jn.00561.2010 CrossRefPubMed Beste C, Baune BT, Falkenstein M, Konrad C (2010a) Variations in the TNF-α gene (TNF-α-308G→A) affect attention and action selection mechanisms in a dissociated fashion. J Neurophysiol 104(5):2523–2531. doi:10.​1152/​jn.​00561.​2010 CrossRefPubMed
go back to reference Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 112(12):2224–2232CrossRef Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 112(12):2224–2232CrossRef
go back to reference Dippel G, Beste C (2015) A causal role of the right inferior frontal cortex in the strategies of multi-component behaviour. Nature Commun. doi:10.1038/ncomms7587 Dippel G, Beste C (2015) A causal role of the right inferior frontal cortex in the strategies of multi-component behaviour. Nature Commun. doi:10.​1038/​ncomms7587
go back to reference Druey MD, Hübner R (2007) The role of temporal cue-target overlap in backward inhibition under task switching. Psychon Bull Rev 14(4):749–754CrossRefPubMed Druey MD, Hübner R (2007) The role of temporal cue-target overlap in backward inhibition under task switching. Psychon Bull Rev 14(4):749–754CrossRefPubMed
go back to reference Falkenstein M, Hohnsbein J, Hoormann J (1994a) Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr Clin Neurophysiol 92(2):148–160CrossRefPubMed Falkenstein M, Hohnsbein J, Hoormann J (1994a) Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr Clin Neurophysiol 92(2):148–160CrossRefPubMed
go back to reference Falkenstein M, Hohnsbein J, Hoormann J (1994b) Time pressure effect on late components of the event-related potential (ERP). J Psychophysiol 8:22–30 Falkenstein M, Hohnsbein J, Hoormann J (1994b) Time pressure effect on late components of the event-related potential (ERP). J Psychophysiol 8:22–30
go back to reference Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 113(5):702–712CrossRef Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 113(5):702–712CrossRef
go back to reference Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C (2011) The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol Aging 32(12):2327.e7–19. doi:10.1016/j.neurobiolaging.2011.06.010 Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C (2011) The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol Aging 32(12):2327.e7–19. doi:10.1016/j.neurobiolaging.2011.06.010
go back to reference Gehring WJ, Bryck RL, Jonides J, Albin RL, Badre D (2003) The mind’s eye, looking inward? In search of executive control in internal attention shifting. Psychophysiology 40(4):572–585CrossRefPubMed Gehring WJ, Bryck RL, Jonides J, Albin RL, Badre D (2003) The mind’s eye, looking inward? In search of executive control in internal attention shifting. Psychophysiology 40(4):572–585CrossRefPubMed
go back to reference Geng JJ, Vossel S (2013) Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 37(10, Part 2):2608–2620. doi:10.1016/j.neubiorev.2013.08.010 Geng JJ, Vossel S (2013) Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 37(10, Part 2):2608–2620. doi:10.1016/j.neubiorev.2013.08.010
go back to reference Herrmann CS, Knight RT (2001) Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev 25(6):465–476CrossRefPubMed Herrmann CS, Knight RT (2001) Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev 25(6):465–476CrossRefPubMed
go back to reference Hilti CC, Jann K, Heinemann D, Federspiel A, Dierks T, Seifritz E, Cattapan-Ludewig K (2013) Evidence for a cognitive control network for goal-directed attention in simple sustained attention. Brain Cognit 81(2):193–202. doi:10.1016/j.bandc.2012.10.013 CrossRef Hilti CC, Jann K, Heinemann D, Federspiel A, Dierks T, Seifritz E, Cattapan-Ludewig K (2013) Evidence for a cognitive control network for goal-directed attention in simple sustained attention. Brain Cognit 81(2):193–202. doi:10.​1016/​j.​bandc.​2012.​10.​013 CrossRef
go back to reference Johnson JA, Zatorre RJ (2005) Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cereb Cortex (New York, N.Y.: 1991) 15(10):1609–1620. doi:10.1093/cercor/bhi039 Johnson JA, Zatorre RJ (2005) Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cereb Cortex (New York, N.Y.: 1991) 15(10):1609–1620. doi:10.1093/cercor/bhi039
go back to reference Karayanidis F, Coltheart M, Michie PT, Murphy K (2003) Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology 40(3):329–348CrossRefPubMed Karayanidis F, Coltheart M, Michie PT, Murphy K (2003) Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology 40(3):329–348CrossRefPubMed
go back to reference Larson MJ, Clayson PE, Clawson A (2014) Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int J Psychophysiol Off J Int Org Psychophysiol 93(3):283–297. doi:10.1016/j.ijpsycho.2014.06.007 Larson MJ, Clayson PE, Clawson A (2014) Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int J Psychophysiol Off J Int Org Psychophysiol 93(3):283–297. doi:10.​1016/​j.​ijpsycho.​2014.​06.​007
go back to reference Logan GD, Bundesen C (2003) Clever homunculus: is there an endogenous act of control in the explicit task-cuing procedure? J Exp Psychol Hum Percept Perform 29:575–599CrossRefPubMed Logan GD, Bundesen C (2003) Clever homunculus: is there an endogenous act of control in the explicit task-cuing procedure? J Exp Psychol Hum Percept Perform 29:575–599CrossRefPubMed
go back to reference Lorist MM, Klein M, Nieuwenhuis S, De Jong R, Mulder G, Meijman TF (2000) Mental fatigue and task control: planning and preparation. Psychophysiology 37(5):614–625CrossRefPubMed Lorist MM, Klein M, Nieuwenhuis S, De Jong R, Mulder G, Meijman TF (2000) Mental fatigue and task control: planning and preparation. Psychophysiology 37(5):614–625CrossRefPubMed
go back to reference Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75(6):528–542CrossRefPubMed Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75(6):528–542CrossRefPubMed
go back to reference Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77(1):24–42PubMed Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77(1):24–42PubMed
go back to reference Mayr U, Keele SW (2000) Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen 129(1):4–26CrossRefPubMed Mayr U, Keele SW (2000) Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen 129(1):4–26CrossRefPubMed
go back to reference Mayr U, Diedrichsen J, Ivry R, Keele SW (2006) Dissociating task-set selection from task-set inhibition in the prefrontal cortex. J Cogn Neurosci 18:14–21CrossRefPubMed Mayr U, Diedrichsen J, Ivry R, Keele SW (2006) Dissociating task-set selection from task-set inhibition in the prefrontal cortex. J Cogn Neurosci 18:14–21CrossRefPubMed
go back to reference Mincic AM (2010) Neural substrate of the cognitive and emotional interference processing in healthy adolescents. Acta Neurobiologiae Experimentalis 70(4):406–422PubMed Mincic AM (2010) Neural substrate of the cognitive and emotional interference processing in healthy adolescents. Acta Neurobiologiae Experimentalis 70(4):406–422PubMed
go back to reference Mückschel M, Stock A-K, Beste C (2014) Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex (New York, N.Y.: 1991) 24(8):2120–2129. doi:10.1093/cercor/bht066 Mückschel M, Stock A-K, Beste C (2014) Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex (New York, N.Y.: 1991) 24(8):2120–2129. doi:10.1093/cercor/bht066
go back to reference Nunez PL, Pilgreen KL (1991) The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 8(4):397–413 Nunez PL, Pilgreen KL (1991) The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 8(4):397–413
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
go back to reference Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12 Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12
go back to reference Philipp AM, Weidner R, Koch I, Fink GR (2013) Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching. Human Brain Mapp 34(8):1910–1920. doi:10.1002/hbm.22036 CrossRef Philipp AM, Weidner R, Koch I, Fink GR (2013) Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching. Human Brain Mapp 34(8):1910–1920. doi:10.​1002/​hbm.​22036 CrossRef
go back to reference Raftery AE (1995) Bayesian model selection in social research. In: Mardsen P (ed) Sociological methodology. Blackwell, Cambridge, pp 11–196 Raftery AE (1995) Bayesian model selection in social research. In: Mardsen P (ed) Sociological methodology. Blackwell, Cambridge, pp 11–196
go back to reference Reynolds JH, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24(1):19–29, 111–125 Reynolds JH, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24(1):19–29, 111–125
go back to reference Scheil J, Kleinsorge T (2014) N − 2 repetition costs depend on preparation in trials n − 1 and n − 2. J Exp Psychol Learn Mem Cognit 40(3):865–872. doi:10.1037/a0035281 CrossRef Scheil J, Kleinsorge T (2014) N − 2 repetition costs depend on preparation in trials n − 1 and n − 2. J Exp Psychol Learn Mem Cognit 40(3):865–872. doi:10.​1037/​a0035281 CrossRef
go back to reference Van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77(4–5):477–482CrossRefPubMed Van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77(4–5):477–482CrossRefPubMed
go back to reference Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19(3):165–181CrossRef Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19(3):165–181CrossRef
go back to reference Vidyasagar TR (1999) A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Res Brain Res Rev 30(1):66–76CrossRefPubMed Vidyasagar TR (1999) A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Res Brain Res Rev 30(1):66–76CrossRefPubMed
go back to reference Wagenmakers E-J (2007) A practical solution to the pervasive problems of p values. Psychon Bull Rev 14(5):779–804CrossRefPubMed Wagenmakers E-J (2007) A practical solution to the pervasive problems of p values. Psychon Bull Rev 14(5):779–804CrossRefPubMed
Metadata
Title
The system neurophysiological basis of backward inhibition
Authors
Rui Zhang
Ann-Kathrin Stock
Rico Fischer
Christian Beste
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1186-0

Other articles of this Issue 9/2016

Brain Structure and Function 9/2016 Go to the issue