Skip to main content
Top
Published in: Brain Structure and Function 9/2016

01-12-2016 | Original Article

Altered resonance properties of somatosensory responses in mice deficient for the schizophrenia risk gene Neuregulin 1

Authors: Claudia S. Barz, Thomas Bessaih, Ted Abel, Dirk Feldmeyer, Diego Contreras

Published in: Brain Structure and Function | Issue 9/2016

Login to get access

Abstract

To reveal the neuronal underpinnings of sensory processing deficits in patients with schizophrenia, previous studies have investigated brain activity in response to sustained sensory stimulation at various frequencies. This paradigm evoked neural activity at the stimulation frequency and harmonics thereof. During visual and auditory stimulation that elicited enhanced or ‘resonant’ responses in healthy controls, patients with schizophrenia displayed reduced activity. The present study sought to elucidate the cellular basis of disease-related deficits in sensory resonance properties using mice heterozygous for the schizophrenia susceptibility gene Neuregulin 1 (NRG1). We applied repetitive whisker stimulation at 1–15 Hz, a range relevant to whisking behavior in mice, and measured cellular activity in the primary somatosensory cortex. At frequencies where control mice displayed enhancements in measures of response magnitude and precision, NRG1 (+/−) mutants showed reductions. Our results demonstrate for the first time a link between a mutation of a schizophrenia risk gene and altered neuronal resonance properties in sensory cortex.
Appendix
Available only for authorised users
Literature
go back to reference Abe Y, Namba H, Kato T, Iwakura Y, Nawa H (2011) Neuregulin-1 signals from the periphery regulate AMPA receptor sensitivity and expression in GABAergic interneurons in developing neocortex. J Neurosci 31:5699–5709CrossRefPubMed Abe Y, Namba H, Kato T, Iwakura Y, Nawa H (2011) Neuregulin-1 signals from the periphery regulate AMPA receptor sensitivity and expression in GABAergic interneurons in developing neocortex. J Neurosci 31:5699–5709CrossRefPubMed
go back to reference Ahissar E, Sosnik R, Bagdasarian K, Haidarliu S (2001) Temporal frequency of whisker movement. II. Laminar organization of cortical representations. J Neurophysiol 86:354–367PubMed Ahissar E, Sosnik R, Bagdasarian K, Haidarliu S (2001) Temporal frequency of whisker movement. II. Laminar organization of cortical representations. J Neurophysiol 86:354–367PubMed
go back to reference Arabzadeh E, Petersen RS, Diamond ME (2003) Encoding of whisker vibration by rat barrel cortex neurons: implications for texture discrimination. J Neurosci 23:9146–9154PubMed Arabzadeh E, Petersen RS, Diamond ME (2003) Encoding of whisker vibration by rat barrel cortex neurons: implications for texture discrimination. J Neurosci 23:9146–9154PubMed
go back to reference Ashida G, Wagner H, Carr CE (2010) Processing of phase-locked spikes and periodic signals. In: Analysis of parallel spike trains. Springer, New York, pp 59–74 Ashida G, Wagner H, Carr CE (2010) Processing of phase-locked spikes and periodic signals. In: Analysis of parallel spike trains. Springer, New York, pp 59–74
go back to reference Bean JC, Lin TW, Sathyamurthy A, Liu F, Yin DM, Xiong WC, Mei L (2014) Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: distribution of GABA and non-GABA ErbB4-positive cells in adult mouse brain. J Neurosci 34:13549–13566CrossRefPubMedPubMedCentral Bean JC, Lin TW, Sathyamurthy A, Liu F, Yin DM, Xiong WC, Mei L (2014) Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: distribution of GABA and non-GABA ErbB4-positive cells in adult mouse brain. J Neurosci 34:13549–13566CrossRefPubMedPubMedCentral
go back to reference Belforte JE et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83CrossRefPubMed Belforte JE et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83CrossRefPubMed
go back to reference Brenner CA, Krishnan GP, Vohs JL, Ahn W-Y, Hetrick WP, Morzorati SL, O’Donnell BF (2009) Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 35:1065–1077CrossRefPubMedPubMedCentral Brenner CA, Krishnan GP, Vohs JL, Ahn W-Y, Hetrick WP, Morzorati SL, O’Donnell BF (2009) Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 35:1065–1077CrossRefPubMedPubMedCentral
go back to reference Carlen M et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17:537–548CrossRefPubMed Carlen M et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17:537–548CrossRefPubMed
go back to reference Carvell G, Simons D (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648PubMed Carvell G, Simons D (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648PubMed
go back to reference Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437–446CrossRefPubMed Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437–446CrossRefPubMed
go back to reference Deschênes M, Timofeeva E, Lavallée P (2003) The relay of high-frequency sensory signals in the whisker-to-barreloid pathway. J Neurosci 23:6778–6787PubMed Deschênes M, Timofeeva E, Lavallée P (2003) The relay of high-frequency sensory signals in the whisker-to-barreloid pathway. J Neurosci 23:6778–6787PubMed
go back to reference Diaz-Quesada M, Maravall M (2008) Intrinsic mechanisms for adaptive gain rescaling in barrel cortex. J Neurosci 28:696–710CrossRefPubMed Diaz-Quesada M, Maravall M (2008) Intrinsic mechanisms for adaptive gain rescaling in barrel cortex. J Neurosci 28:696–710CrossRefPubMed
go back to reference Duffy L, Cappas E, Scimone A, Schofield PR, Karl T (2008) Behavioral profile of a heterozygous mutant mouse model for EGF-like domain neuregulin 1. Behav Neurosci 122:748–759CrossRefPubMed Duffy L, Cappas E, Scimone A, Schofield PR, Karl T (2008) Behavioral profile of a heterozygous mutant mouse model for EGF-like domain neuregulin 1. Behav Neurosci 122:748–759CrossRefPubMed
go back to reference Emir UE, Bayraktaroglu Z, Ozturk C, Ademoglu A, Demiralp T (2008) Changes in BOLD transients with visual stimuli across 1–44Hz. Neurosci Lett 436:185–188CrossRefPubMed Emir UE, Bayraktaroglu Z, Ozturk C, Ademoglu A, Demiralp T (2008) Changes in BOLD transients with visual stimuli across 1–44Hz. Neurosci Lett 436:185–188CrossRefPubMed
go back to reference Fazzari P et al (2010) Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464:1376–1380CrossRefPubMed Fazzari P et al (2010) Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464:1376–1380CrossRefPubMed
go back to reference Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480CrossRefPubMed Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480CrossRefPubMed
go back to reference Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563CrossRefPubMed Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563CrossRefPubMed
go back to reference Gainetdinov RR, Mohn AR, Caron MG (2001) Genetic animal models: focus on schizophrenia. Trends Neurosci 24:527–533CrossRefPubMed Gainetdinov RR, Mohn AR, Caron MG (2001) Genetic animal models: focus on schizophrenia. Trends Neurosci 24:527–533CrossRefPubMed
go back to reference Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012a) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62:1504–1518CrossRefPubMed Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012a) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62:1504–1518CrossRefPubMed
go back to reference Gandal MJ et al (2012b) GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. Transl Psychiatry 17:69 Gandal MJ et al (2012b) GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. Transl Psychiatry 17:69
go back to reference Garabedian CE, Jones SR, Merzenich MM, Dale A, Moore CI (2003) Band-pass response properties of rat SI neurons. J Neurophysiol 90:1379–1391CrossRefPubMed Garabedian CE, Jones SR, Merzenich MM, Dale A, Moore CI (2003) Band-pass response properties of rat SI neurons. J Neurophysiol 90:1379–1391CrossRefPubMed
go back to reference Harvey MA, Bermejo R, Zeigler HP (2001) Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. Somatosens Mot Res 18:211–222CrossRefPubMed Harvey MA, Bermejo R, Zeigler HP (2001) Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. Somatosens Mot Res 18:211–222CrossRefPubMed
go back to reference Higley MJ, Contreras D (2006) Balanced excitation and inhibition determine spike timing during frequency adaptation. J Neurosci 26:448–457CrossRefPubMed Higley MJ, Contreras D (2006) Balanced excitation and inhibition determine spike timing during frequency adaptation. J Neurosci 26:448–457CrossRefPubMed
go back to reference Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 101:8467–8472CrossRefPubMedPubMedCentral Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 101:8467–8472CrossRefPubMedPubMedCentral
go back to reference Jenkins G, Röhricht F (2007) From cenesthesias to cenesthopathic schizophrenia: a historical and phenomenological review. Psychopathology 40:361–368CrossRefPubMed Jenkins G, Röhricht F (2007) From cenesthesias to cenesthopathic schizophrenia: a historical and phenomenological review. Psychopathology 40:361–368CrossRefPubMed
go back to reference Jin Y, Sandman CA, Wu JC, Bernat J, Potkin SG (1995) Topographic analysis of EEG photic driving in normal and schizophrenic subjects. Clin Electroencephalogr 26:102–107CrossRefPubMed Jin Y, Sandman CA, Wu JC, Bernat J, Potkin SG (1995) Topographic analysis of EEG photic driving in normal and schizophrenic subjects. Clin Electroencephalogr 26:102–107CrossRefPubMed
go back to reference Jin Y, Castellanos A Jr, Solis E Jr, Potkin S (2000) EEG resonant responses in schizophrenia: a photic driving study with improved harmonic resolution. Schizophr Res 44:213–220CrossRefPubMed Jin Y, Castellanos A Jr, Solis E Jr, Potkin S (2000) EEG resonant responses in schizophrenia: a photic driving study with improved harmonic resolution. Schizophr Res 44:213–220CrossRefPubMed
go back to reference Krishnan GP, Vohs JL, Hetrick WP, Carroll CA, Shekhar A, Bockbrader MA, O’Donnell BF (2005) Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol 116:614–624CrossRefPubMed Krishnan GP, Vohs JL, Hetrick WP, Carroll CA, Shekhar A, Bockbrader MA, O’Donnell BF (2005) Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol 116:614–624CrossRefPubMed
go back to reference Krishnan G, Hetrick W, Brenner C, Shekhar A, Steffen A, O’Donnell B (2009) Steady state and induced auditory gamma deficits in schizophrenia. Neuroimage 47:1711CrossRefPubMed Krishnan G, Hetrick W, Brenner C, Shekhar A, Steffen A, O’Donnell B (2009) Steady state and induced auditory gamma deficits in schizophrenia. Neuroimage 47:1711CrossRefPubMed
go back to reference Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, Braff DL (2006) Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 60:1231–1240CrossRefPubMed Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, Braff DL (2006) Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 60:1231–1240CrossRefPubMed
go back to reference Maravall M, Petersen R, Fairhall A, Arabzadeh E, Diamond M (2007) Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol 5:e19CrossRefPubMedPubMedCentral Maravall M, Petersen R, Fairhall A, Arabzadeh E, Diamond M (2007) Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol 5:e19CrossRefPubMedPubMedCentral
go back to reference Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390CrossRefPubMed Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390CrossRefPubMed
go back to reference Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, Doty RL (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology 21:325–340CrossRefPubMed Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, Doty RL (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology 21:325–340CrossRefPubMed
go back to reference Moore CI (2004) Frequency-dependent processing in the vibrissa sensory system. J Neurophysiol 91:2390–2399CrossRefPubMed Moore CI (2004) Frequency-dependent processing in the vibrissa sensory system. J Neurophysiol 91:2390–2399CrossRefPubMed
go back to reference Moore C, Nelson S, Sur M (1999) Dynamics of neuronal processing in rat somatosensory cortex. Trends Neurosci 22:513–520CrossRefPubMed Moore C, Nelson S, Sur M (1999) Dynamics of neuronal processing in rat somatosensory cortex. Trends Neurosci 22:513–520CrossRefPubMed
go back to reference Musall S, von der Behrens W, Mayrhofer JM, Weber B, Helmchen F, Haiss F (2014) Tactile frequency discrimination is enhanced by circumventing neocortical adaptation. Nat Neurosci 17:1567–1573. doi:10.1038/nn.3821 CrossRefPubMed Musall S, von der Behrens W, Mayrhofer JM, Weber B, Helmchen F, Haiss F (2014) Tactile frequency discrimination is enhanced by circumventing neocortical adaptation. Nat Neurosci 17:1567–1573. doi:10.​1038/​nn.​3821 CrossRefPubMed
go back to reference Näätänen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12:125–135CrossRefPubMed Näätänen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12:125–135CrossRefPubMed
go back to reference Nacher V, Ledberg A, Deco G, Romo R (2013) Coherent delta-band oscillations between cortical areas correlate with decision making. Proc Natl Acad Sci USA 110:15085–15090CrossRefPubMedPubMedCentral Nacher V, Ledberg A, Deco G, Romo R (2013) Coherent delta-band oscillations between cortical areas correlate with decision making. Proc Natl Acad Sci USA 110:15085–15090CrossRefPubMedPubMedCentral
go back to reference Nicolelis MA, Fanselow EE (2002) Thalamocortical optimization of tactile processing according to behavioral state. Nat Neurosci 5:517–523CrossRefPubMed Nicolelis MA, Fanselow EE (2002) Thalamocortical optimization of tactile processing according to behavioral state. Nat Neurosci 5:517–523CrossRefPubMed
go back to reference Ollerenshaw DR, Zheng HJ, Millard DC, Wang Q, Stanley GB (2014) The adaptive trade-off between detection and discrimination in cortical representations and behavior. Neuron 81:1152–1164CrossRefPubMedPubMedCentral Ollerenshaw DR, Zheng HJ, Millard DC, Wang Q, Stanley GB (2014) The adaptive trade-off between detection and discrimination in cortical representations and behavior. Neuron 81:1152–1164CrossRefPubMedPubMedCentral
go back to reference Papaleo F, Lipska BK, Weinberger DR (2012) Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 62:1204–1220CrossRefPubMed Papaleo F, Lipska BK, Weinberger DR (2012) Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 62:1204–1220CrossRefPubMed
go back to reference Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811CrossRefPubMed Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811CrossRefPubMed
go back to reference Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219CrossRefPubMed Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219CrossRefPubMed
go back to reference Sheth BR, Moore CI, Sur M (1998) Temporal modulation of spatial borders in rat barrel cortex. J Neurophysiol 79:464–470PubMed Sheth BR, Moore CI, Sur M (1998) Temporal modulation of spatial borders in rat barrel cortex. J Neurophysiol 79:464–470PubMed
go back to reference Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41:798–820PubMed Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41:798–820PubMed
go back to reference Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23:7407–7411PubMedPubMedCentral Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23:7407–7411PubMedPubMedCentral
go back to reference Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K (2004) Neuregulin 1 and schizophrenia. Ann Med 36:62–71CrossRefPubMed Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K (2004) Neuregulin 1 and schizophrenia. Ann Med 36:62–71CrossRefPubMed
go back to reference Tsuchimoto R et al (2011) Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr Res 133:99–105CrossRefPubMed Tsuchimoto R et al (2011) Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr Res 133:99–105CrossRefPubMed
go back to reference Uhlhaas PJ, Haenschel C, Nikolic D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34:927–943CrossRefPubMedPubMedCentral Uhlhaas PJ, Haenschel C, Nikolic D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34:927–943CrossRefPubMedPubMedCentral
go back to reference Venables NC, Bernat EM, Sponheim SR (2009) Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophr Bull 35:826–839CrossRefPubMed Venables NC, Bernat EM, Sponheim SR (2009) Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophr Bull 35:826–839CrossRefPubMed
go back to reference Vogels TP, Abbott LF (2007) Gating deficits in model networks: a path to schizophrenia? Pharmacopsychiatry 40:S73–77CrossRefPubMed Vogels TP, Abbott LF (2007) Gating deficits in model networks: a path to schizophrenia? Pharmacopsychiatry 40:S73–77CrossRefPubMed
go back to reference Wen L et al (2010) Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA 107:1211–1216CrossRefPubMed Wen L et al (2010) Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA 107:1211–1216CrossRefPubMed
go back to reference Winterer G et al (2000) Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 111:837–849CrossRefPubMed Winterer G et al (2000) Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 111:837–849CrossRefPubMed
go back to reference Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, Weinberger DR (2004) Prefrontal broadband noise, working memory, and genetic risk for schizophrenia AJ. Psychiatry 161:490–500 Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, Weinberger DR (2004) Prefrontal broadband noise, working memory, and genetic risk for schizophrenia AJ. Psychiatry 161:490–500
go back to reference Winterer G et al (2006) Instability of prefrontal signal processing in schizophrenia AJ. Psychiatry 163:1960–1968 Winterer G et al (2006) Instability of prefrontal signal processing in schizophrenia AJ. Psychiatry 163:1960–1968
go back to reference Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242CrossRefPubMed Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242CrossRefPubMed
Metadata
Title
Altered resonance properties of somatosensory responses in mice deficient for the schizophrenia risk gene Neuregulin 1
Authors
Claudia S. Barz
Thomas Bessaih
Ted Abel
Dirk Feldmeyer
Diego Contreras
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1169-6

Other articles of this Issue 9/2016

Brain Structure and Function 9/2016 Go to the issue