Skip to main content
Top
Published in: Brain Structure and Function 3/2015

Open Access 01-05-2015 | Original Article

Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits

Authors: I. J. Edwards, V. K. Lall, J. F. Paton, Y. Yanagawa, G. Szabo, S. A. Deuchars, J. Deuchars

Published in: Brain Structure and Function | Issue 3/2015

Login to get access

Abstract

Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours—the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD.
Literature
go back to reference Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520(18):4051–4066 available from: PM:22700183CrossRefPubMed Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520(18):4051–4066 available from: PM:22700183CrossRefPubMed
go back to reference Alipour M, Chen Y, Jurgens U (2002) Anterograde projections of the motorcortical tongue area in the saddle-back tamarin (Saguinus fuscicollis). Brain Behav Evol 60(2):101–116 available from: PM:12373061CrossRefPubMed Alipour M, Chen Y, Jurgens U (2002) Anterograde projections of the motorcortical tongue area in the saddle-back tamarin (Saguinus fuscicollis). Brain Behav Evol 60(2):101–116 available from: PM:12373061CrossRefPubMed
go back to reference Alvarez FJ, Villalba RM, Zerda R, Schneider SP (2004) Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 472(3):257–280 available from: PM:15065123CrossRefPubMed Alvarez FJ, Villalba RM, Zerda R, Schneider SP (2004) Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 472(3):257–280 available from: PM:15065123CrossRefPubMed
go back to reference Arber S, Ladle DR, Lin JH, Frank E, Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101(5):485–498 available from: PM:10850491CrossRefPubMed Arber S, Ladle DR, Lin JH, Frank E, Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101(5):485–498 available from: PM:10850491CrossRefPubMed
go back to reference Atkinson L, Batten TF, Corbett EK, Sinfield JK, Deuchars J (2003) Subcellular localization of neuronal nitric oxide synthase in the rat nucleus of the solitary tract in relation to vagal afferent inputs. Neuroscience 118(1):115–122 available from: PM:12676143CrossRefPubMed Atkinson L, Batten TF, Corbett EK, Sinfield JK, Deuchars J (2003) Subcellular localization of neuronal nitric oxide synthase in the rat nucleus of the solitary tract in relation to vagal afferent inputs. Neuroscience 118(1):115–122 available from: PM:12676143CrossRefPubMed
go back to reference Beckman ME, Whitehead MC (1991) Intramedullary connections of the rostral nucleus of the solitary tract in the hamster. Brain Res 557(1–2):265–279 available from: PM:1747757CrossRefPubMed Beckman ME, Whitehead MC (1991) Intramedullary connections of the rostral nucleus of the solitary tract in the hamster. Brain Res 557(1–2):265–279 available from: PM:1747757CrossRefPubMed
go back to reference Bolton PS, Ray CA (2000) Neck afferent involvement in cardiovascular control during movement. Brain Res Bull 53(1):45–49 available from: PM:11033207CrossRefPubMed Bolton PS, Ray CA (2000) Neck afferent involvement in cardiovascular control during movement. Brain Res Bull 53(1):45–49 available from: PM:11033207CrossRefPubMed
go back to reference Bolton PS, Kerman IA, Woodring SF, Yates BJ (1998) Influences of neck afferents on sympathetic and respiratory nerve activity. Brain Res Bull 47(5):413–419 available from: PM:10052569CrossRefPubMed Bolton PS, Kerman IA, Woodring SF, Yates BJ (1998) Influences of neck afferents on sympathetic and respiratory nerve activity. Brain Res Bull 47(5):413–419 available from: PM:10052569CrossRefPubMed
go back to reference Boscan P, Paton JF (2002) Nociceptive afferents selectively modulate the cardiac component of the peripheral chemoreceptor reflex via actions within the solitary tract nucleus. Neuroscience 110(2):319–328 available from: PM:11958873CrossRefPubMed Boscan P, Paton JF (2002) Nociceptive afferents selectively modulate the cardiac component of the peripheral chemoreceptor reflex via actions within the solitary tract nucleus. Neuroscience 110(2):319–328 available from: PM:11958873CrossRefPubMed
go back to reference Brooke RE, Atkinson L, Edwards I, Parson SH, Deuchars J (2006) Immunohistochemical localisation of the voltage gated potassium ion channel subunit Kv3.3 in the rat medulla oblongata and thoracic spinal cord. Brain Res 1070(1):101–115 available from: PM:16403474CrossRefPubMed Brooke RE, Atkinson L, Edwards I, Parson SH, Deuchars J (2006) Immunohistochemical localisation of the voltage gated potassium ion channel subunit Kv3.3 in the rat medulla oblongata and thoracic spinal cord. Brain Res 1070(1):101–115 available from: PM:16403474CrossRefPubMed
go back to reference Brooke RE, Corns L, Edwards IJ, Deuchars J (2010) Kv3.3 immunoreactivity in the vestibular nuclear complex of the rat with focus on the medial vestibular nucleus: targeting of Kv3.3 neurones by terminals positive for vesicular glutamate transporter 1. Brain Res 1345:45–58 available from: PM:20471378CrossRefPubMed Brooke RE, Corns L, Edwards IJ, Deuchars J (2010) Kv3.3 immunoreactivity in the vestibular nuclear complex of the rat with focus on the medial vestibular nucleus: targeting of Kv3.3 neurones by terminals positive for vesicular glutamate transporter 1. Brain Res 1345:45–58 available from: PM:20471378CrossRefPubMed
go back to reference Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278(1–2):29–51 available from: PM:6315158CrossRefPubMed Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278(1–2):29–51 available from: PM:6315158CrossRefPubMed
go back to reference Castillo-Ruiz A, Gall AJ, Smale L, Nunez AA (2013) Day-night differences in neural activation in histaminergic and serotonergic areas with putative projections to the cerebrospinal fluid in a diurnal brain. Neuroscience 250:352–363 available from: PM:23867764CrossRefPubMed Castillo-Ruiz A, Gall AJ, Smale L, Nunez AA (2013) Day-night differences in neural activation in histaminergic and serotonergic areas with putative projections to the cerebrospinal fluid in a diurnal brain. Neuroscience 250:352–363 available from: PM:23867764CrossRefPubMed
go back to reference Dauvergne C, Pinganaud G, Buisseret P, Buisseret-Delmas C, Zerari-Mailly F (2001) Reticular premotor neurons projecting to both facial and hypoglossal nuclei receive trigeminal afferents in rats. Neurosci Lett 311(2):109–112 available from: PM:11567790CrossRefPubMed Dauvergne C, Pinganaud G, Buisseret P, Buisseret-Delmas C, Zerari-Mailly F (2001) Reticular premotor neurons projecting to both facial and hypoglossal nuclei receive trigeminal afferents in rats. Neurosci Lett 311(2):109–112 available from: PM:11567790CrossRefPubMed
go back to reference Edney DP, Porter JD (1986) Neck muscle afferent projections to the brainstem of the monkey: implications for the neural control of gaze. J Comp Neurol 250(3):389–398 available from: PM:3745522CrossRefPubMed Edney DP, Porter JD (1986) Neck muscle afferent projections to the brainstem of the monkey: implications for the neural control of gaze. J Comp Neurol 250(3):389–398 available from: PM:3745522CrossRefPubMed
go back to reference Edwards IJ, Dallas ML, Poole SL, Milligan CJ, Yanagawa Y, Szabo G, Erdelyi F, Deuchars SA, Deuchars J (2007) The neurochemically diverse intermedius nucleus of the medulla as a source of excitatory and inhibitory synaptic input to the nucleus tractus solitarii. J Neurosci 27(31):8324–8333 available from: PM:17670979CrossRefPubMed Edwards IJ, Dallas ML, Poole SL, Milligan CJ, Yanagawa Y, Szabo G, Erdelyi F, Deuchars SA, Deuchars J (2007) The neurochemically diverse intermedius nucleus of the medulla as a source of excitatory and inhibitory synaptic input to the nucleus tractus solitarii. J Neurosci 27(31):8324–8333 available from: PM:17670979CrossRefPubMed
go back to reference Edwards IJ, Deuchars SA, Deuchars J (2009) The intermedius nucleus of the medulla: a potential site for the integration of cervical information and the generation of autonomic responses. J Chem Neuroanat 38(3):166–175 available from: PM:19790285CrossRefPubMed Edwards IJ, Deuchars SA, Deuchars J (2009) The intermedius nucleus of the medulla: a potential site for the integration of cervical information and the generation of autonomic responses. J Chem Neuroanat 38(3):166–175 available from: PM:19790285CrossRefPubMed
go back to reference Gabriel R, Lesauter J, Banvolgyi T, Petrovics G, Silver R, Witkovsky P (2004) AII amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell Tissue Res 315(2):181–186 available from: PM:14610664CrossRefPubMedCentralPubMed Gabriel R, Lesauter J, Banvolgyi T, Petrovics G, Silver R, Witkovsky P (2004) AII amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell Tissue Res 315(2):181–186 available from: PM:14610664CrossRefPubMedCentralPubMed
go back to reference Herbison AE, Simonian SX, Norris PJ, Emson PC (1996) Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 8(1):73–82 available from: PM:8932739CrossRefPubMed Herbison AE, Simonian SX, Norris PJ, Emson PC (1996) Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 8(1):73–82 available from: PM:8932739CrossRefPubMed
go back to reference Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M, Callister RJ, Graham BA (2012) Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J Physiol 590(Pt 16):3927–3951 available from: PM:22674718CrossRefPubMedCentralPubMed Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M, Callister RJ, Graham BA (2012) Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J Physiol 590(Pt 16):3927–3951 available from: PM:22674718CrossRefPubMedCentralPubMed
go back to reference Imamura J, Saunders MC, Keller JT (1986) Projections of cervical nerves to the rat medulla. Neurosci Lett 70(1):46–51 available from: PM:3774218CrossRefPubMed Imamura J, Saunders MC, Keller JT (1986) Projections of cervical nerves to the rat medulla. Neurosci Lett 70(1):46–51 available from: PM:3774218CrossRefPubMed
go back to reference Jager C, Lendvai D, Seeger G, Bruckner G, Matthews RT, Arendt T, Alpar A, Morawski M (2013) Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience 238:168–184 available from: PM:23428622CrossRefPubMed Jager C, Lendvai D, Seeger G, Bruckner G, Matthews RT, Arendt T, Alpar A, Morawski M (2013) Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience 238:168–184 available from: PM:23428622CrossRefPubMed
go back to reference Kulkarni V, Chandy MJ, Babu KS (2001) Quantitative study of muscle spindles in suboccipital muscles of human foetuses. Neurol India 49(4):355–359 available from: PM:11799407PubMed Kulkarni V, Chandy MJ, Babu KS (2001) Quantitative study of muscle spindles in suboccipital muscles of human foetuses. Neurol India 49(4):355–359 available from: PM:11799407PubMed
go back to reference Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14(10):1122–1133 available from: PM:15115742CrossRefPubMed Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14(10):1122–1133 available from: PM:15115742CrossRefPubMed
go back to reference Melone M, Burette A, Weinberg RJ (2005) Light microscopic identification and immunocytochemical characterization of glutamatergic synapses in brain sections. J Comp Neurol 492(4):495–509 available from: PM:16228991CrossRefPubMed Melone M, Burette A, Weinberg RJ (2005) Light microscopic identification and immunocytochemical characterization of glutamatergic synapses in brain sections. J Comp Neurol 492(4):495–509 available from: PM:16228991CrossRefPubMed
go back to reference Menegola M, Misonou H, Vacher H, Trimmer JS (2008) Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons. Neuroscience 154(3):953–964 available from: PM:18495361CrossRefPubMedCentralPubMed Menegola M, Misonou H, Vacher H, Trimmer JS (2008) Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons. Neuroscience 154(3):953–964 available from: PM:18495361CrossRefPubMedCentralPubMed
go back to reference Messanvi F, Eggens-Meijer E, Roozendaal B, van der Want JJ (2013) A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat. Front Neuroanat 7:41 available from: PM:24367297CrossRefPubMedCentralPubMed Messanvi F, Eggens-Meijer E, Roozendaal B, van der Want JJ (2013) A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat. Front Neuroanat 7:41 available from: PM:24367297CrossRefPubMedCentralPubMed
go back to reference Milligan CJ, Edwards IJ, Deuchars J (2006) HCN1 ion channel immunoreactivity in spinal cord and medulla oblongata. Brain Res 1081(1):79–91 available from: PM:16503331CrossRefPubMed Milligan CJ, Edwards IJ, Deuchars J (2006) HCN1 ion channel immunoreactivity in spinal cord and medulla oblongata. Brain Res 1081(1):79–91 available from: PM:16503331CrossRefPubMed
go back to reference Milnerwood AJ, Kaufman AM, Sepers MD, Gladding CM, Zhang L, Wang L, Fan J, Coquinco A, Qiao JY, Lee H, Wang YT, Cynader M, Raymond LA (2012) Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington’s disease mice. Neurobiol Dis 48(1):40–51 available from: PM:22668780CrossRefPubMed Milnerwood AJ, Kaufman AM, Sepers MD, Gladding CM, Zhang L, Wang L, Fan J, Coquinco A, Qiao JY, Lee H, Wang YT, Cynader M, Raymond LA (2012) Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington’s disease mice. Neurobiol Dis 48(1):40–51 available from: PM:22668780CrossRefPubMed
go back to reference Miyazaki Y, Adachi H, Katsuno M, Minamiyama M, Jiang YM, Huang Z, Doi H, Matsumoto S, Kondo N, Iida M, Tohnai G, Tanaka F, Muramatsu S, Sobue G (2012) Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 18(7):1136–1141 available from: PM:22660636CrossRefPubMed Miyazaki Y, Adachi H, Katsuno M, Minamiyama M, Jiang YM, Huang Z, Doi H, Matsumoto S, Kondo N, Iida M, Tohnai G, Tanaka F, Muramatsu S, Sobue G (2012) Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 18(7):1136–1141 available from: PM:22660636CrossRefPubMed
go back to reference Muller M, Triaca V, Besusso D, Costanzi M, Horn JM, Koudelka J, Geibel M, Cestari V, Minichiello L (2012) Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice. J Neurosci 32(43):14885–14898 available from: PM:23100411CrossRefPubMed Muller M, Triaca V, Besusso D, Costanzi M, Horn JM, Koudelka J, Geibel M, Cestari V, Minichiello L (2012) Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice. J Neurosci 32(43):14885–14898 available from: PM:23100411CrossRefPubMed
go back to reference Mura A, Linder JC, Young SJ, Groves PM (2000) Striatal cells containing aromatic l-amino acid decarboxylase: an immunohistochemical comparison with other classes of striatal neurons. Neuroscience 98(3):501–511 available from: PM:10869844CrossRefPubMed Mura A, Linder JC, Young SJ, Groves PM (2000) Striatal cells containing aromatic l-amino acid decarboxylase: an immunohistochemical comparison with other classes of striatal neurons. Neuroscience 98(3):501–511 available from: PM:10869844CrossRefPubMed
go back to reference Neuhuber WL, Zenker W (1989) Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 280(2):231–253 available from: PM:2466876CrossRefPubMed Neuhuber WL, Zenker W (1989) Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 280(2):231–253 available from: PM:2466876CrossRefPubMed
go back to reference Nomura S, Mizuno N (1985) Differential distribution of cell bodies and central axons of mesencephalic trigeminal nucleus neurons supplying the jaw-closing muscles and periodontal tissue: a transganglionic tracer study in the cat. Brain Res 359(1–2):311–319 available from: PM:4075152CrossRefPubMed Nomura S, Mizuno N (1985) Differential distribution of cell bodies and central axons of mesencephalic trigeminal nucleus neurons supplying the jaw-closing muscles and periodontal tissue: a transganglionic tracer study in the cat. Brain Res 359(1–2):311–319 available from: PM:4075152CrossRefPubMed
go back to reference Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, Beyring R, Robb S, Kirkham FJ, Engel AG (2001) Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 98(4):2017–2022 available from: PM:11172068CrossRefPubMedCentralPubMed Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, Beyring R, Robb S, Kirkham FJ, Engel AG (2001) Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 98(4):2017–2022 available from: PM:11172068CrossRefPubMedCentralPubMed
go back to reference Oka A, Yamamoto M, Takeda R, Ohara H, Sato F, Akhter F, Haque T, Kato T, Sessle BJ, Takada K, Yoshida A (2013) Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Res 1540:48–63 available from: PM:24125811CrossRefPubMed Oka A, Yamamoto M, Takeda R, Ohara H, Sato F, Akhter F, Haque T, Kato T, Sessle BJ, Takada K, Yoshida A (2013) Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Res 1540:48–63 available from: PM:24125811CrossRefPubMed
go back to reference Paxinos G, Watson C (1998) The rat brain. In: Stereotaxic coordinates, 4th edn. Academic Press, San Diego Paxinos G, Watson C (1998) The rat brain. In: Stereotaxic coordinates, 4th edn. Academic Press, San Diego
go back to reference Pfaller K, Arvidsson J (1988) Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 268(1):91–108 available from: PM:3346387CrossRefPubMed Pfaller K, Arvidsson J (1988) Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 268(1):91–108 available from: PM:3346387CrossRefPubMed
go back to reference Pfister J, Zenker W (1984) The splenius capitis muscle of the rat, architecture and histochemistry, afferent and efferent innervation as compared with that of the quadriceps muscle. Anat Embryol (Berl) 169(1):79–89 available from: PM:6721223CrossRef Pfister J, Zenker W (1984) The splenius capitis muscle of the rat, architecture and histochemistry, afferent and efferent innervation as compared with that of the quadriceps muscle. Anat Embryol (Berl) 169(1):79–89 available from: PM:6721223CrossRef
go back to reference Ponti G, Peretto P, Bonfanti L (2008) Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLoS One 3(6) e2366 (available from: PM:18523645) Ponti G, Peretto P, Bonfanti L (2008) Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLoS One 3(6) e2366 (available from: PM:18523645)
go back to reference Popratiloff AS, Streppel M, Gruart A, Guntinas-Lichius O, Angelov DN, Stennert E, gado-Garcia JM, Neiss WF (2001) Hypoglossal and reticular interneurons involved in oro-facial coordination in the rat. J Comp Neurol 433(3):364–379 available from: PM:11298361CrossRefPubMed Popratiloff AS, Streppel M, Gruart A, Guntinas-Lichius O, Angelov DN, Stennert E, gado-Garcia JM, Neiss WF (2001) Hypoglossal and reticular interneurons involved in oro-facial coordination in the rat. J Comp Neurol 433(3):364–379 available from: PM:11298361CrossRefPubMed
go back to reference Potts JT, Spyer KM, Paton JF (2000) Somatosympathetic reflex in a working heart-brainstem preparation of the rat. Brain Res Bull 53(1):59–67 available from: PM:11033209CrossRefPubMed Potts JT, Spyer KM, Paton JF (2000) Somatosympathetic reflex in a working heart-brainstem preparation of the rat. Brain Res Bull 53(1):59–67 available from: PM:11033209CrossRefPubMed
go back to reference Prihoda M, Hiller MS, Mayr R (1991) Central projections of cervical primary afferent fibers in the Guinea pig: an HRP and WGA/HRP tracer study. J Comp Neurol 308(3):418–431 available from: PM:1865009CrossRefPubMed Prihoda M, Hiller MS, Mayr R (1991) Central projections of cervical primary afferent fibers in the Guinea pig: an HRP and WGA/HRP tracer study. J Comp Neurol 308(3):418–431 available from: PM:1865009CrossRefPubMed
go back to reference Richmond FJ, Abrahams VC (1975) Morphology and enzyme histochemistry of dorsal muscles of the cat neck. J Neurophysiol 38(6):1312–1321 available from: PM:176329PubMed Richmond FJ, Abrahams VC (1975) Morphology and enzyme histochemistry of dorsal muscles of the cat neck. J Neurophysiol 38(6):1312–1321 available from: PM:176329PubMed
go back to reference Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242(4):511–534 available from: PM:2418079CrossRefPubMed Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242(4):511–534 available from: PM:2418079CrossRefPubMed
go back to reference She K, Ferreira JS, Carvalho AL, Craig AM (2012) Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-d-aspartate (NMDA) receptors. J Biol Chem 287(33):27432–27445 available from: PM:22740692CrossRefPubMedCentralPubMed She K, Ferreira JS, Carvalho AL, Craig AM (2012) Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-d-aspartate (NMDA) receptors. J Biol Chem 287(33):27432–27445 available from: PM:22740692CrossRefPubMedCentralPubMed
go back to reference Stechison MT, Saintcyr JA (1986) Organization of spinal inputs to the perihypoglossal complex in the cat. J Comp Neurol 246(4):555–567 available from: ISI:A1986A963100010CrossRefPubMed Stechison MT, Saintcyr JA (1986) Organization of spinal inputs to the perihypoglossal complex in the cat. J Comp Neurol 246(4):555–567 available from: ISI:A1986A963100010CrossRefPubMed
go back to reference Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM (2010) Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J Neurosci 30(16):5590–5602 available from: PM:20410112CrossRefPubMedCentralPubMed Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM (2010) Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J Neurosci 30(16):5590–5602 available from: PM:20410112CrossRefPubMedCentralPubMed
go back to reference Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki JI, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79 available from: ISI:000186516100006CrossRefPubMed Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki JI, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79 available from: ISI:000186516100006CrossRefPubMed
go back to reference Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17(1):13–27 available from: PM:12534965CrossRefPubMed Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17(1):13–27 available from: PM:12534965CrossRefPubMed
go back to reference Yang S, Xiong CJ, Sun HM, Li XS, Zhang GQ, Wu B, Zhou DS (2012) The distribution of HCN2-positive cells in the gastrointestinal tract of mice. J Anat 221(4):303–310 available from: PM:22803609CrossRefPubMedCentralPubMed Yang S, Xiong CJ, Sun HM, Li XS, Zhang GQ, Wu B, Zhou DS (2012) The distribution of HCN2-positive cells in the gastrointestinal tract of mice. J Anat 221(4):303–310 available from: PM:22803609CrossRefPubMedCentralPubMed
Metadata
Title
Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits
Authors
I. J. Edwards
V. K. Lall
J. F. Paton
Y. Yanagawa
G. Szabo
S. A. Deuchars
J. Deuchars
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0734-8

Other articles of this Issue 3/2015

Brain Structure and Function 3/2015 Go to the issue