Skip to main content
Top
Published in: Brain Structure and Function 2/2015

01-03-2015 | Short Communication

Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla

Authors: Huiyuan Zheng, Li Cai, Linda Rinaman

Published in: Brain Structure and Function | Issue 2/2015

Login to get access

Abstract

In rodents, glucagon-like peptide-1 (GLP-1)-positive neurons within the caudal medulla respond to a broad array of interoceptive signals that suppress food intake and drive the hypothalamic–pituitary–adrenal stress axis. The collective results of experiments utilizing cFos to identify activated neurons in rats and mice indicate that GLP-1 neurons are consistently activated by stimuli that present actual or anticipated threats to bodily homeostasis. The distribution of GLP-1-positive neurons in the human brain is unreported. The present study identified GLP-1-positive neurons and mapped their distribution within the caudal medulla in two adult human subjects (one female, one male). The goal of the study was to obtain structural evidence with which to challenge the general hypothesis that functions ascribed to GLP-1 neurons in rodent species may reflect parallel functions that exist in humans. In both human subjects, GLP-1-immunopositive neurons were located within the dorsal medullary region containing the caudal (visceral) nucleus of the solitary tract and in the nearby medullary reticular formation, similar to the distribution of GLP-1 neurons in rats, mice, and Old World monkeys. Quantitative analysis indicates the presence of approximately 6.5–9.3 K GLP-1-positive neurons bilaterally within the human caudal medulla. It will be important in future studies to map the distribution of GLP-1-positive fibers and terminals within higher regions of the human brain, to improve our understanding of how central GLP-1 signaling pathways might influence stress responsiveness, energy balance, and other physiological and behavioral functions.
Literature
go back to reference Abercrombie M (1946) Estimation of nuclear populations from microtome sections. Anat Rec 94:239–247CrossRefPubMed Abercrombie M (1946) Estimation of nuclear populations from microtome sections. Anat Rec 94:239–247CrossRefPubMed
go back to reference Alhadeff AL, Rupprecht LE, Hayes MR (2012) GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153(2):647–658CrossRefPubMedCentralPubMed Alhadeff AL, Rupprecht LE, Hayes MR (2012) GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153(2):647–658CrossRefPubMedCentralPubMed
go back to reference Alvarez E, Martinez MD, Roncero I, Chowen JA, Garcia-Cuartero B, Gispert JD, Sanz C, Vazquez P, Maldonado A, de Caceres J, Desco M, Pozo MA, Blazquez E (2005) The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 92(4):798–806CrossRefPubMed Alvarez E, Martinez MD, Roncero I, Chowen JA, Garcia-Cuartero B, Gispert JD, Sanz C, Vazquez P, Maldonado A, de Caceres J, Desco M, Pozo MA, Blazquez E (2005) The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 92(4):798–806CrossRefPubMed
go back to reference Dossat AM, Lilly N, Kay K, Williams DL (2011) Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci 31(41):14453–14457CrossRefPubMedCentralPubMed Dossat AM, Lilly N, Kay K, Williams DL (2011) Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci 31(41):14453–14457CrossRefPubMedCentralPubMed
go back to reference Drucker DJ, Asa S (1988) Glucagon gene expression in vertebrate brain. J Biol Chem 263(27):13475–13478PubMed Drucker DJ, Asa S (1988) Glucagon gene expression in vertebrate brain. J Biol Chem 263(27):13475–13478PubMed
go back to reference Gaykema RPA, Daniels TE, Shapiro NJ, Thacker GC, Park S-M, Goehler LE (2009) Immune challenge and satiety-related activation of both distinct and overlapping neuronal populations in the brainstem indicate parallel pathways for viscerosensory signaling. Brain Res 1294:61–79CrossRefPubMedCentralPubMed Gaykema RPA, Daniels TE, Shapiro NJ, Thacker GC, Park S-M, Goehler LE (2009) Immune challenge and satiety-related activation of both distinct and overlapping neuronal populations in the brainstem indicate parallel pathways for viscerosensory signaling. Brain Res 1294:61–79CrossRefPubMedCentralPubMed
go back to reference Grill HJ, Hayes MR (2012) Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 16(3):296–309CrossRefPubMed Grill HJ, Hayes MR (2012) Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 16(3):296–309CrossRefPubMed
go back to reference Gu G, Roland B, Tomaselli K, Dolman CS, Lowe C, Heilig JS (2013) Glucagon-like peptide-1 in the rat brain: distribution of expression and functional implication. J Comp Neurol 521(10):2235–2261CrossRefPubMed Gu G, Roland B, Tomaselli K, Dolman CS, Lowe C, Heilig JS (2013) Glucagon-like peptide-1 in the rat brain: distribution of expression and functional implication. J Comp Neurol 521(10):2235–2261CrossRefPubMed
go back to reference Han VK, Hynes MA, Jin C, Towle AC, Lauder JM, Lund PK (1986) Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res 16(1):97–107CrossRefPubMed Han VK, Hynes MA, Jin C, Towle AC, Lauder JM, Lund PK (1986) Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res 16(1):97–107CrossRefPubMed
go back to reference Hayes MR, Bradley L, Grill HJ (2009) Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150(6):2654–2659CrossRefPubMedCentralPubMed Hayes MR, Bradley L, Grill HJ (2009) Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150(6):2654–2659CrossRefPubMedCentralPubMed
go back to reference Hyde TM, Miselis RR (1992) Subnuclear organization of the human caudal nucleus of the solitary tract. Brain Res Bull 29(1):95–109CrossRefPubMed Hyde TM, Miselis RR (1992) Subnuclear organization of the human caudal nucleus of the solitary tract. Brain Res Bull 29(1):95–109CrossRefPubMed
go back to reference Jelsing J, Galzin A-M, Guillot E, Pruniaux M-P, Larsen PJ, Vrang N (2009) Localization and phenotypic characterization of brainstem neurons activated by rimonabant and WIN55,212-2. Brain Res Bull 78(4–5):202–210CrossRefPubMed Jelsing J, Galzin A-M, Guillot E, Pruniaux M-P, Larsen PJ, Vrang N (2009) Localization and phenotypic characterization of brainstem neurons activated by rimonabant and WIN55,212-2. Brain Res Bull 78(4–5):202–210CrossRefPubMed
go back to reference Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in rat hypothalamus and brainstem. Neuroscience 77(1):257–270CrossRefPubMed Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in rat hypothalamus and brainstem. Neuroscience 77(1):257–270CrossRefPubMed
go back to reference Llewellyn-Smith IJ, Reimann F, Gribble FM, Trapp S (2011) Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 180:111–121CrossRefPubMedCentralPubMed Llewellyn-Smith IJ, Reimann F, Gribble FM, Trapp S (2011) Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 180:111–121CrossRefPubMedCentralPubMed
go back to reference Llewellyn-Smith IJ, Gnanamanickam GJ, Reimann F, Gribble FM, Trapp S (2013) Preproglucagon (PPG) neurons innervate neurochemically identified autonomic neurons in the mouse brainstem. Neuroscience 229:130–143CrossRefPubMedCentralPubMed Llewellyn-Smith IJ, Gnanamanickam GJ, Reimann F, Gribble FM, Trapp S (2013) Preproglucagon (PPG) neurons innervate neurochemically identified autonomic neurons in the mouse brainstem. Neuroscience 229:130–143CrossRefPubMedCentralPubMed
go back to reference Maniscalco JW, Rinaman L (2013) Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats. Physiol Behav 121:35–42CrossRefPubMed Maniscalco JW, Rinaman L (2013) Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats. Physiol Behav 121:35–42CrossRefPubMed
go back to reference Maniscalco JW, Kreisler AD, Rinaman L (2013) Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing peptide or glucagon-like peptide 1. Front Neurosci 6:199CrossRefPubMedCentralPubMed Maniscalco JW, Kreisler AD, Rinaman L (2013) Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing peptide or glucagon-like peptide 1. Front Neurosci 6:199CrossRefPubMedCentralPubMed
go back to reference Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403:261–280CrossRefPubMed Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403:261–280CrossRefPubMed
go back to reference Potes CS, Lutz TA (2010) Brainstem mechanisms of amylin-induced anorexia. Physiol Behav 100(5):511–518CrossRefPubMed Potes CS, Lutz TA (2010) Brainstem mechanisms of amylin-induced anorexia. Physiol Behav 100(5):511–518CrossRefPubMed
go back to reference Renner E, Puskas N, Dobolyi A, Palkovits M (2012) Glucagon-like peptide-1 of brainstem origin activates dorsomedial hypothalamic neurons in satiated rats. Peptides 35(1):14–22CrossRefPubMed Renner E, Puskas N, Dobolyi A, Palkovits M (2012) Glucagon-like peptide-1 of brainstem origin activates dorsomedial hypothalamic neurons in satiated rats. Peptides 35(1):14–22CrossRefPubMed
go back to reference Rinaman L (1999) Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am J Physiol 277:R582–R590 (Reg Int Comp Physiol 46)PubMed Rinaman L (1999) Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am J Physiol 277:R582–R590 (Reg Int Comp Physiol 46)PubMed
go back to reference Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34CrossRefPubMedCentralPubMed Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34CrossRefPubMedCentralPubMed
go back to reference Sarkar S, Fekete C, Legradi G, Lechan RM (2003) Glucagon like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res 985:163–168CrossRefPubMed Sarkar S, Fekete C, Legradi G, Lechan RM (2003) Glucagon like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res 985:163–168CrossRefPubMed
go back to reference Schafer MK-H, Day R, Cullinan WE, Chrétien M, Seidah NG, Watson SJ (1993) Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J Neurosci 13(3):1258–1279PubMed Schafer MK-H, Day R, Cullinan WE, Chrétien M, Seidah NG, Watson SJ (1993) Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J Neurosci 13(3):1258–1279PubMed
go back to reference Vrang N, Grove K (2011) The brainstem preproglucagon system in a non-human primate (Macaca mulatta). Brain Res 1397:28–37CrossRefPubMed Vrang N, Grove K (2011) The brainstem preproglucagon system in a non-human primate (Macaca mulatta). Brain Res 1397:28–37CrossRefPubMed
go back to reference Vrang N, Larsen PJ (2010) Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 92:442–462CrossRefPubMed Vrang N, Larsen PJ (2010) Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 92:442–462CrossRefPubMed
go back to reference Vrang N, Phifer CB, Corkern MM, Berthoud H-R (2003) Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am J Physiol Regul Integr Comp Physiol 285:R470–R478PubMed Vrang N, Phifer CB, Corkern MM, Berthoud H-R (2003) Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am J Physiol Regul Integr Comp Physiol 285:R470–R478PubMed
go back to reference Vrang N, Hansen M, Larsen PJ, Tang-Christensen M (2007) Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Res 1149:118–126CrossRefPubMed Vrang N, Hansen M, Larsen PJ, Tang-Christensen M (2007) Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Res 1149:118–126CrossRefPubMed
go back to reference Watson RE, Wiegand ST, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7:155–159CrossRefPubMed Watson RE, Wiegand ST, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7:155–159CrossRefPubMed
go back to reference Zhang R, Packard BA, Tauchi M, D’Alessio DA, Herman JP (2009) Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proc Natl Acad Sci 106(14):5913–5918CrossRefPubMedCentralPubMed Zhang R, Packard BA, Tauchi M, D’Alessio DA, Herman JP (2009) Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proc Natl Acad Sci 106(14):5913–5918CrossRefPubMedCentralPubMed
Metadata
Title
Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla
Authors
Huiyuan Zheng
Li Cai
Linda Rinaman
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0714-z

Other articles of this Issue 2/2015

Brain Structure and Function 2/2015 Go to the issue