Skip to main content
Top
Published in: Brain Structure and Function 2/2015

01-03-2015 | Original Article

Definition and characterization of an extended social-affective default network

Authors: Maren Amft, Danilo Bzdok, Angela R. Laird, Peter T. Fox, Leonhard Schilbach, Simon B. Eickhoff

Published in: Brain Structure and Function | Issue 2/2015

Login to get access

Abstract

Recent evidence suggests considerable overlap between the default mode network (DMN) and regions involved in social, affective and introspective processes. We considered these overlapping regions as the social-affective part of the DMN. In this study, we established a robust mapping of the underlying brain network formed by these regions and those strongly connected to them (the extended social-affective default network). We first seeded meta-analytic connectivity modeling and resting-state analyses in the meta-analytically defined DMN regions that showed statistical overlap with regions associated with social and affective processing. Consensus connectivity of each seed was subsequently delineated by a conjunction across both connectivity analyses. We then functionally characterized the ensuing regions and performed several cluster analyses. Among the identified regions, the amygdala/hippocampus formed a cluster associated with emotional processes and memory functions. The ventral striatum, anterior cingulum, subgenual cingulum and ventromedial prefrontal cortex formed a heterogeneous subgroup associated with motivation, reward and cognitive modulation of affect. Posterior cingulum/precuneus and dorsomedial prefrontal cortex were associated with mentalizing, self-reference and autobiographic information. The cluster formed by the temporo-parietal junction and anterior middle temporal sulcus/gyrus was associated with language and social cognition. Taken together, the current work highlights a robustly interconnected network that may be central to introspective, socio-affective, that is, self- and other-related mental processes.
Appendix
Available only for authorised users
Literature
go back to reference Adolphs R, Cahill L, Schul R, Babinsky R (1997) Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn Mem 4(3):291–300CrossRefPubMed Adolphs R, Cahill L, Schul R, Babinsky R (1997) Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn Mem 4(3):291–300CrossRefPubMed
go back to reference Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935:107–117CrossRefPubMed Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935:107–117CrossRefPubMed
go back to reference Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641CrossRefPubMed Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641CrossRefPubMed
go back to reference Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB (2012a) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp. doi:10.1002/hbm.22138 PubMed Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB (2012a) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp. doi:10.​1002/​hbm.​22138 PubMed
go back to reference Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Eickhoff SB (2013a) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage (in press) Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Eickhoff SB (2013a) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage (in press)
go back to reference Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Eickhoff SB (2013c) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81:381–392. doi:10.1016/j.neuroimage.2013.05.046 CrossRefPubMed Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Eickhoff SB (2013c) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81:381–392. doi:10.​1016/​j.​neuroimage.​2013.​05.​046 CrossRefPubMed
go back to reference Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. doi:10.1002/hbm.20718 CrossRefPubMedCentralPubMed Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. doi:10.​1002/​hbm.​20718 CrossRefPubMedCentralPubMed
go back to reference Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21:768–769 Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21:768–769
go back to reference Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1):15–29. doi:10.1002/hbm.20113 CrossRefPubMed Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1):15–29. doi:10.​1002/​hbm.​20113 CrossRefPubMed
go back to reference Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C Appl Stat 28(1):100–108 Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C Appl Stat 28(1):100–108
go back to reference Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I, Moritz M, Throop CJ, Fiske AP (2004) Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage 21(3):1167–1173. doi:10.1016/j.neuroimage.2003.11.013 CrossRefPubMed Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I, Moritz M, Throop CJ, Fiske AP (2004) Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage 21(3):1167–1173. doi:10.​1016/​j.​neuroimage.​2003.​11.​013 CrossRefPubMed
go back to reference Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP (2002) Neural correlates of self-reflection. Brain 125(Pt 8):1808–1814CrossRefPubMed Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP (2002) Neural correlates of self-reflection. Brain 125(Pt 8):1808–1814CrossRefPubMed
go back to reference Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF (2012b) Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex 22(8):1894–1903. doi:10.1093/cercor/bhr268 CrossRefPubMed Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF (2012b) Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex 22(8):1894–1903. doi:10.​1093/​cercor/​bhr268 CrossRefPubMed
go back to reference Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682PubMed Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682PubMed
go back to reference Orosz A, Jann K, Federspiel A, Horn H, Hofle O, Dierks T, Walther S (2012) Reduced cerebral blood flow within the default-mode network and within total gray matter in major depression. Brain Connect 2(6):303–310. doi:10.1089/brain.2012.0101 CrossRefPubMed Orosz A, Jann K, Federspiel A, Horn H, Hofle O, Dierks T, Walther S (2012) Reduced cerebral blood flow within the default-mode network and within total gray matter in major depression. Brain Connect 2(6):303–310. doi:10.​1089/​brain.​2012.​0101 CrossRefPubMed
go back to reference Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971CrossRefPubMed Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971CrossRefPubMed
go back to reference Sander D, Grafman J, Zalla T (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci 14(4):303–316PubMed Sander D, Grafman J, Zalla T (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci 14(4):303–316PubMed
go back to reference Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi:10.1016/j.neuroimage.2012.08.052 CrossRefPubMed Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi:10.​1016/​j.​neuroimage.​2012.​08.​052 CrossRefPubMed
go back to reference Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19(4):1835–1842CrossRefPubMed Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19(4):1835–1842CrossRefPubMed
go back to reference Schilbach L, Wilms M, Eickhoff SB, Romanzetti S, Tepest R, Bente G, Vogeley K (2010) Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry. J Cogn Neurosci 22(12):2702–2715. doi:10.1162/jocn.2009.21401 CrossRefPubMed Schilbach L, Wilms M, Eickhoff SB, Romanzetti S, Tepest R, Bente G, Vogeley K (2010) Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry. J Cogn Neurosci 22(12):2702–2715. doi:10.​1162/​jocn.​2009.​21401 CrossRefPubMed
go back to reference Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21(3):489–510. doi:10.1162/jocn.2008.21029 CrossRefPubMed Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21(3):489–510. doi:10.​1162/​jocn.​2008.​21029 CrossRefPubMed
go back to reference Timmermans B, Schilbach L, Pasquali A, Cleeremans A (2012) Higher order thoughts in action: consciousness as an unconscious re-description process. Philos Trans R Soc Lond B Biol Sci 367(1594):1412–1423. doi:10.1098/rstb 2011.0421CrossRefPubMedCentralPubMed Timmermans B, Schilbach L, Pasquali A, Cleeremans A (2012) Higher order thoughts in action: consciousness as an unconscious re-description process. Philos Trans R Soc Lond B Biol Sci 367(1594):1412–1423. doi:10.​1098/​rstb 2011.0421CrossRefPubMedCentralPubMed
go back to reference Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Hum Brain Mapp 33(1):1–13. doi:10.1002/hbm.21186 CrossRefPubMed Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Hum Brain Mapp 33(1):1–13. doi:10.​1002/​hbm.​21186 CrossRefPubMed
Metadata
Title
Definition and characterization of an extended social-affective default network
Authors
Maren Amft
Danilo Bzdok
Angela R. Laird
Peter T. Fox
Leonhard Schilbach
Simon B. Eickhoff
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0698-0

Other articles of this Issue 2/2015

Brain Structure and Function 2/2015 Go to the issue