Skip to main content
Top
Published in: European Journal of Applied Physiology 11/2020

Open Access 01-11-2020 | Original Article

PGC-1α alternative promoter (Exon 1b) controls augmentation of total PGC-1α gene expression in response to cold water immersion and low glycogen availability

Authors: R. Allan, J. P. Morton, G. L. Close, B. Drust, W. Gregson, A. P. Sharples

Published in: European Journal of Applied Physiology | Issue 11/2020

Login to get access

Abstract

This investigation sought to determine whether post-exercise cold water immersion and low glycogen availability, separately and in combination, would preferentially activate either the Exon 1a or Exon 1b Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) promoter. Through a reanalysis of sample design, we identified that the systemic cold-induced augmentation of total PGC-1α gene expression observed previously (Allan et al. in J Appl Physiol 123(2):451–459, 2017) was largely a result of increased expression from the alternative promoter (Exon 1b), rather than canonical promoter (Exon 1a). Low glycogen availability in combination with local cooling of the muscle (Allan et al. in Physiol Rep 7(11):e14082, 2019) demonstrated that PGC-1α alternative promoter (Exon 1b) expression continued to rise at 3 h post-exercise in all conditions; whilst, expression from the canonical promoter (Exon 1a) decreased between the same time points (post-exercise–3 h post-exercise). Importantly, this increase in PGC-1α Exon 1b expression was reduced compared to the response of low glycogen or cold water immersion alone, suggesting that the combination of prior low glycogen and CWI post-exercise impaired the response in gene expression versus these conditions individually. Data herein emphasise the influence of post-exercise cooling and low glycogen availability on Exon-specific control of total PGC-1 α gene expression and highlight the need for future research to assess Exon-specific regulation of PGC-1α.
Literature
go back to reference Allan R, Sharples AP, Close GL, Drust B, Shepherd SO, Dutton J, Morton JP, Gregson W (2017) Post-exercise cold-water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and non-immersed limbs: evidence of systemic regulation. J Appl Physiol 123(2):451–459CrossRef Allan R, Sharples AP, Close GL, Drust B, Shepherd SO, Dutton J, Morton JP, Gregson W (2017) Post-exercise cold-water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and non-immersed limbs: evidence of systemic regulation. J Appl Physiol 123(2):451–459CrossRef
go back to reference Allan R, Sharples AP, Cocks M, Drust B, Duton J, Dugdale HF, Mawhinney C, Clucas A, Hawkins W, Morton JP, Gregson W (2019) Low pre-exercise muscle glycogen availability offsets the effect of post-exercise cold water immersion in augmenting PGC-1α gene expression. Physiol Rep 7(11):e14082CrossRef Allan R, Sharples AP, Cocks M, Drust B, Duton J, Dugdale HF, Mawhinney C, Clucas A, Hawkins W, Morton JP, Gregson W (2019) Low pre-exercise muscle glycogen availability offsets the effect of post-exercise cold water immersion in augmenting PGC-1α gene expression. Physiol Rep 7(11):e14082CrossRef
go back to reference Brandt N, Nielsen L, Buch BT, Gudisken A, Ringholm S, Hellsten Y, Bangsbo J, Pilegaard H (2017) Impact of β-adrenergic signalling in PGC-1α- mediated adaptations in mouse skeletal muscle. Am J Physiol Endocrinol Metab 314(1):E1–E20CrossRef Brandt N, Nielsen L, Buch BT, Gudisken A, Ringholm S, Hellsten Y, Bangsbo J, Pilegaard H (2017) Impact of β-adrenergic signalling in PGC-1α- mediated adaptations in mouse skeletal muscle. Am J Physiol Endocrinol Metab 314(1):E1–E20CrossRef
go back to reference Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Aci USA 106(50):21401–21406CrossRef Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Aci USA 106(50):21401–21406CrossRef
go back to reference Hearris MA, Hammond KM, Seabourne RA, Stocks B, Shepherd SO, Philp A, Sharples AP, Morton JP, Louis JB (2019) Graded reductions in preexercise muscle glycogen impair exercise capacity but do not augment skeletal muscle cell signalling: implications for CHO periodisation. J Appl Physiol 126(6):1587–1597CrossRef Hearris MA, Hammond KM, Seabourne RA, Stocks B, Shepherd SO, Philp A, Sharples AP, Morton JP, Louis JB (2019) Graded reductions in preexercise muscle glycogen impair exercise capacity but do not augment skeletal muscle cell signalling: implications for CHO periodisation. J Appl Physiol 126(6):1587–1597CrossRef
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–12CrossRef Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–12CrossRef
go back to reference Ihsan M, Watson G, Choo HC, Lewandowski P, Papazzo A, Cameron-smith D, Abbiss CR (2014) Postexercise muscle cooling enhances gene expression of PGC-1α. Med Sci Sports Exerc 46(10):1900–1907CrossRef Ihsan M, Watson G, Choo HC, Lewandowski P, Papazzo A, Cameron-smith D, Abbiss CR (2014) Postexercise muscle cooling enhances gene expression of PGC-1α. Med Sci Sports Exerc 46(10):1900–1907CrossRef
go back to reference Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, Morton JP (2018) Fuel for the work required: A theoretical framework for carbohydrate periodisation and the glycogen threshold hypothesis. Sports Med 48(5):1031–1048CrossRef Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, Morton JP (2018) Fuel for the work required: A theoretical framework for carbohydrate periodisation and the glycogen threshold hypothesis. Sports Med 48(5):1031–1048CrossRef
go back to reference Joo CH, Allan R, Drust B, Close GL, Jeong TS, Bartlett JD, Mawhinney C, Louhelainen J, Morton JP, Gregson W (2016) Passive and post-exercise cold-water immersion augments PGC-1α and VEGF expression in human and skeletal muscle. Eur J Appl Physiol 116(11–12):2315–2326CrossRef Joo CH, Allan R, Drust B, Close GL, Jeong TS, Bartlett JD, Mawhinney C, Louhelainen J, Morton JP, Gregson W (2016) Passive and post-exercise cold-water immersion augments PGC-1α and VEGF expression in human and skeletal muscle. Eur J Appl Physiol 116(11–12):2315–2326CrossRef
go back to reference Martinez-redondo V, Pettersson AT, Ruas JL (2015) The hitchiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58(9):1969–1977CrossRef Martinez-redondo V, Pettersson AT, Ruas JL (2015) The hitchiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58(9):1969–1977CrossRef
go back to reference Martinez-redondo V, Janniq PR, Correia JC, Ferreira DM, Cervenka I, Lindvall JM, Sinha I, Izadi M, Pettersson-klein AT, Agudelo LZ, GimINEZ-cassina A, Brum PC, Dahlman-wright K, Ruas JL (2016) Peroxisome proliferator-activated receptor γ coactivator-1 α isoforms selectively regulate multiple splicing events on target genes. J Biol Chem 291(29):15169–15184CrossRef Martinez-redondo V, Janniq PR, Correia JC, Ferreira DM, Cervenka I, Lindvall JM, Sinha I, Izadi M, Pettersson-klein AT, Agudelo LZ, GimINEZ-cassina A, Brum PC, Dahlman-wright K, Ruas JL (2016) Peroxisome proliferator-activated receptor γ coactivator-1 α isoforms selectively regulate multiple splicing events on target genes. J Biol Chem 291(29):15169–15184CrossRef
go back to reference Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T (2011) Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 301(6):E1092–1098CrossRef Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T (2011) Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 301(6):E1092–1098CrossRef
go back to reference Popov DV, Lysenko EA, Kuzmin IV, Vinogradova V, Grigoriev AI (2015a) Regulation of PGC-1α isoform expression in skeletal muscles. Acta Nat 7(1):48–59CrossRef Popov DV, Lysenko EA, Kuzmin IV, Vinogradova V, Grigoriev AI (2015a) Regulation of PGC-1α isoform expression in skeletal muscles. Acta Nat 7(1):48–59CrossRef
go back to reference Popov DV, Lysenko EA, Vepkhvadze TF, Kurochkina NS, Mankovskii PA, Vinogradova OL (2015b) Promoter-specific regulation of PPARGC1A gene expression in human skeletal muscle. J Mol Endocrinol 55(2):159–168CrossRef Popov DV, Lysenko EA, Vepkhvadze TF, Kurochkina NS, Mankovskii PA, Vinogradova OL (2015b) Promoter-specific regulation of PPARGC1A gene expression in human skeletal muscle. J Mol Endocrinol 55(2):159–168CrossRef
go back to reference Schmittgen TD, Livak KJ (2008) Analysing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRef Schmittgen TD, Livak KJ (2008) Analysing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRef
go back to reference Silvennoinen M, Ahtiainen JP, Hulmi JJ, Pekkala S, Taipale RS, Nindl BC, Laine T, Häkkinen K, Seläne H, Kyröläinen H, Kainulainen H (2015) PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise. Physiol Rep 3(10):e12563CrossRef Silvennoinen M, Ahtiainen JP, Hulmi JJ, Pekkala S, Taipale RS, Nindl BC, Laine T, Häkkinen K, Seläne H, Kyröläinen H, Kainulainen H (2015) PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise. Physiol Rep 3(10):e12563CrossRef
go back to reference Tadaishi M, Miura S, Kai Y, Kawsaki E, Koshinaka K, Kawanaka K, Nagata J, Oishi Y, Ezaki O (2011) Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β2-adrenergic receptor activation. Am J Physiol Endocrinol Metab 300(2):E341–349CrossRef Tadaishi M, Miura S, Kai Y, Kawsaki E, Koshinaka K, Kawanaka K, Nagata J, Oishi Y, Ezaki O (2011) Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β2-adrenergic receptor activation. Am J Physiol Endocrinol Metab 300(2):E341–349CrossRef
go back to reference Wen X, Wu J, Chang JS, Zhang P, Wang J, Zhang Y, Gettys TW, Zhang Y (2014) Effect of exercise intensity on isoform-specific expressions of NT-PGC-1α mRNA in mouse skeletal muscle. Biomed Res Int 2014:402175PubMedPubMedCentral Wen X, Wu J, Chang JS, Zhang P, Wang J, Zhang Y, Gettys TW, Zhang Y (2014) Effect of exercise intensity on isoform-specific expressions of NT-PGC-1α mRNA in mouse skeletal muscle. Biomed Res Int 2014:402175PubMedPubMedCentral
Metadata
Title
PGC-1α alternative promoter (Exon 1b) controls augmentation of total PGC-1α gene expression in response to cold water immersion and low glycogen availability
Authors
R. Allan
J. P. Morton
G. L. Close
B. Drust
W. Gregson
A. P. Sharples
Publication date
01-11-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 11/2020
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-020-04467-6

Other articles of this Issue 11/2020

European Journal of Applied Physiology 11/2020 Go to the issue