Skip to main content
Top
Published in: European Journal of Applied Physiology 2/2019

01-02-2019 | Invited Review

Mitochondrial health and muscle plasticity after spinal cord injury

Authors: Ashraf S. Gorgey, Oksana Witt, Laura O’Brien, Christopher Cardozo, Qun Chen, Edward J. Lesnefsky, Zachary A. Graham

Published in: European Journal of Applied Physiology | Issue 2/2019

Login to get access

Abstract

Mitochondria are responsible for aerobic respiration and large-scale ATP production in almost all cells of the body. Their function is decreased in many neurodegenerative and cardiovascular disease states, in metabolic disorders such as type II diabetes and obesity, and as a normal component of aging. Disuse of skeletal muscle from immobilization or unloading triggers alterations of mitochondrial density and activity. Resultant mitochondrial dysfunction after paralysis, which precedes muscle atrophy, may augment subsequent release of reactive oxygen species leading to protein ubiquitination and degradation. Spinal cord injury is a unique form of disuse atrophy as there is a complete or partial disruption in tonic communication between the central nervous system (CNS) and skeletal muscle. Paralysis, unloading and disruption of CNS communication result in a rapid decline in skeletal muscle function and metabolic status with disruption in activity of peroxisome-proliferator-activated receptor-gamma co-activator 1 alpha and calcineurin, key regulators of mitochondrial health and function. External interventions, both acute and chronical with training using body-weight-assisted treadmill training or electrical stimulation have consistently demonstrated adaptations in skeletal muscle mitochondria, and expression of the genes and proteins required for mitochondrial oxidation of fats and carbohydrates to ATP, water, and carbon dioxide. The purpose of this mini-review is to highlight our current understanding as to how paralysis mechanistically triggers downstream regulation in mitochondrial density and activity and to discuss how mitochondrial dysfunction may contribute to skeletal muscle atrophy.
Literature
go back to reference Abadi A, Glover EI, Isfort RJ, Raha S, Safdar A, Yasuda N, Kaczor JJ, Melov S, Hubbard A, Qu X, Phillips SM, Tarnopolsky M (2009) Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS One 4(8):e6518CrossRefPubMedPubMedCentral Abadi A, Glover EI, Isfort RJ, Raha S, Safdar A, Yasuda N, Kaczor JJ, Melov S, Hubbard A, Qu X, Phillips SM, Tarnopolsky M (2009) Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS One 4(8):e6518CrossRefPubMedPubMedCentral
go back to reference Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA (2005) Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol 289(4):C994–C1001CrossRefPubMed Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA (2005) Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol 289(4):C994–C1001CrossRefPubMed
go back to reference Adhihetty PJ, O’Leary MF, Chabi B, Wicks KL, Hood DA (2007) Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J Appl Physiol 102(3):1143–1151CrossRefPubMed Adhihetty PJ, O’Leary MF, Chabi B, Wicks KL, Hood DA (2007) Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J Appl Physiol 102(3):1143–1151CrossRefPubMed
go back to reference Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14(2):196–207CrossRefPubMedPubMedCentral Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14(2):196–207CrossRefPubMedPubMedCentral
go back to reference Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JL, Florensa-Vila J (2014) Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: a randomized clinical trial. J Spinal Cord Med 37(3):299–309CrossRefPubMedPubMedCentral Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JL, Florensa-Vila J (2014) Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: a randomized clinical trial. J Spinal Cord Med 37(3):299–309CrossRefPubMedPubMedCentral
go back to reference Bank M, Stein A, Sison C, Glazer A, Jassal N, McCarthy D, Shatzer M, Hahn B, Chugh R, Davies P, Bloom O (2015) Elevated circulating levels of the pro-inflammatory cytokine macrophage migration inhibitory factor in individuals with acute spinal cord injury. Arch Phys Med Rehabil 96(4):633–644CrossRefPubMed Bank M, Stein A, Sison C, Glazer A, Jassal N, McCarthy D, Shatzer M, Hahn B, Chugh R, Davies P, Bloom O (2015) Elevated circulating levels of the pro-inflammatory cytokine macrophage migration inhibitory factor in individuals with acute spinal cord injury. Arch Phys Med Rehabil 96(4):633–644CrossRefPubMed
go back to reference Bauman WA, Spungen AM (2001) Carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med 24(4):266–277CrossRefPubMed Bauman WA, Spungen AM (2001) Carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med 24(4):266–277CrossRefPubMed
go back to reference Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335(1):1–7CrossRefPubMed Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335(1):1–7CrossRefPubMed
go back to reference Bhattacharya A, Muller FL, Liu Y, Sabia M, Liang H, Song W, Jang YC, Ran Q, Van Remmen H (2009) Denervation induces cytosolic phospholipase A2-mediated fatty acid hydroperoxide generation by muscle mitochondria. J Biol Chem 284(1):46–55CrossRefPubMedPubMedCentral Bhattacharya A, Muller FL, Liu Y, Sabia M, Liang H, Song W, Jang YC, Ran Q, Van Remmen H (2009) Denervation induces cytosolic phospholipase A2-mediated fatty acid hydroperoxide generation by muscle mitochondria. J Biol Chem 284(1):46–55CrossRefPubMedPubMedCentral
go back to reference Bhattacharya A, Lustgarten M, Shi Y, Liu Y, Jang YC, Pulliam D, Jernigan AL, Van Remmen H (2011) Increased mitochondrial matrix-directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria. Free Radic Biol Med 50(5):592–601CrossRefPubMed Bhattacharya A, Lustgarten M, Shi Y, Liu Y, Jang YC, Pulliam D, Jernigan AL, Van Remmen H (2011) Increased mitochondrial matrix-directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria. Free Radic Biol Med 50(5):592–601CrossRefPubMed
go back to reference Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833CrossRefPubMed Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833CrossRefPubMed
go back to reference Brown JL, Rosa-Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, Haynie WS, Hardee JP, Carson JA, Wiggs MP, Washington TA, Greene NP (2017) Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle 8(6):926–938CrossRefPubMedPubMedCentral Brown JL, Rosa-Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, Haynie WS, Hardee JP, Carson JA, Wiggs MP, Washington TA, Greene NP (2017) Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle 8(6):926–938CrossRefPubMedPubMedCentral
go back to reference Calabria E, Ciciliot S, Moretti I, Garcia M, Picard A, Dyar KA, Pallafacchina G, Tothova J, Schiaffino S, Murgia M (2009) NFAT isoforms control activity-dependent muscle fiber type specification. Proc Natl Acad Sci USA 106(32):13335–13340CrossRefPubMedPubMedCentral Calabria E, Ciciliot S, Moretti I, Garcia M, Picard A, Dyar KA, Pallafacchina G, Tothova J, Schiaffino S, Murgia M (2009) NFAT isoforms control activity-dependent muscle fiber type specification. Proc Natl Acad Sci USA 106(32):13335–13340CrossRefPubMedPubMedCentral
go back to reference Carvalho de Abreu DC, Júnior AC, Rondina JM, Cendes F (2008) Muscle hypertrophy in quadriplegics with combined electrical stimulation and body weight support training. Int J Rehabil Res 31(2):171–175CrossRefPubMed Carvalho de Abreu DC, Júnior AC, Rondina JM, Cendes F (2008) Muscle hypertrophy in quadriplegics with combined electrical stimulation and body weight support training. Int J Rehabil Res 31(2):171–175CrossRefPubMed
go back to reference Cea LA, Cisterna BA, Puebla C, Frank M, Figueroa XF, Cardozo C, Willecke K, Latorre R, Sáez JC (2013) De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci USA 110(40):16229–16234CrossRefPubMedPubMedCentral Cea LA, Cisterna BA, Puebla C, Frank M, Figueroa XF, Cardozo C, Willecke K, Latorre R, Sáez JC (2013) De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci USA 110(40):16229–16234CrossRefPubMedPubMedCentral
go back to reference Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252CrossRefPubMed Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252CrossRefPubMed
go back to reference Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141(2):280–289CrossRefPubMedPubMedCentral Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141(2):280–289CrossRefPubMedPubMedCentral
go back to reference Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burnham R (1999) Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism 48(11):1409–1413CrossRefPubMed Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burnham R (1999) Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism 48(11):1409–1413CrossRefPubMed
go back to reference Cirnigliaro CM, LaFountaine MF, Dengel DR, Bosch TA, Emmons RR, Kirshblum SC, Sauer S, Asselin P, Spungen AM, Bauman WA (2015) Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity (Silver Spring Md) 23(9):1811–1817CrossRef Cirnigliaro CM, LaFountaine MF, Dengel DR, Bosch TA, Emmons RR, Kirshblum SC, Sauer S, Asselin P, Spungen AM, Bauman WA (2015) Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity (Silver Spring Md) 23(9):1811–1817CrossRef
go back to reference Cogswell AM, Stevens RJ, Hood DA (1993) Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol 264(2 Pt1):C383–C389CrossRefPubMed Cogswell AM, Stevens RJ, Hood DA (1993) Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol 264(2 Pt1):C383–C389CrossRefPubMed
go back to reference Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253PubMedPubMedCentral Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253PubMedPubMedCentral
go back to reference Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ, Smith K, Szewczyk NJ, Atherton PJ (2013) Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/ mTOR/S6K1-associated pathway. Am J Physiol Endocrinol Metab 305(2):E183–E193CrossRefPubMedPubMedCentral Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ, Smith K, Szewczyk NJ, Atherton PJ (2013) Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/ mTOR/S6K1-associated pathway. Am J Physiol Endocrinol Metab 305(2):E183–E193CrossRefPubMedPubMedCentral
go back to reference Davies AL, Hayes KC, Dekaban GA (2007) Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil 88(11):1384–1393CrossRefPubMed Davies AL, Hayes KC, Dekaban GA (2007) Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil 88(11):1384–1393CrossRefPubMed
go back to reference de Abreu DC, Cliquet A Jr, Rondina JM, Cendes F (2009) Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin Orthop Relat Res 467(2):553–557CrossRefPubMed de Abreu DC, Cliquet A Jr, Rondina JM, Cendes F (2009) Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin Orthop Relat Res 467(2):553–557CrossRefPubMed
go back to reference Dodd KM, Tee AR (2012) Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 302(11):E1329–E1342CrossRefPubMed Dodd KM, Tee AR (2012) Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 302(11):E1329–E1342CrossRefPubMed
go back to reference Dudley GA, Castro MJ, Rogers S, Apple DF Jr (1999) A simple means of increasing muscle size after spinal cord injury: a pilot study. Eur J Appl Physiol Occup Physiol 80(4):394–396CrossRefPubMed Dudley GA, Castro MJ, Rogers S, Apple DF Jr (1999) A simple means of increasing muscle size after spinal cord injury: a pilot study. Eur J Appl Physiol Occup Physiol 80(4):394–396CrossRefPubMed
go back to reference Durieux AC, D’Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Flück M (2009) Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 587(Pt 14):3703–3717CrossRefPubMedPubMedCentral Durieux AC, D’Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Flück M (2009) Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 587(Pt 14):3703–3717CrossRefPubMedPubMedCentral
go back to reference Elder CP, Apple DF, Bickel CS, Meyer RA, Dudley GA (2004) Intramuscular fat and glucose tolerance after spinal cord injury-a cross-sectional study. Spinal Cord 42(12):711–716CrossRefPubMed Elder CP, Apple DF, Bickel CS, Meyer RA, Dudley GA (2004) Intramuscular fat and glucose tolerance after spinal cord injury-a cross-sectional study. Spinal Cord 42(12):711–716CrossRefPubMed
go back to reference Erickson ML, Ryan TE, Young HJ, McCully KK (2013) Near-infrared assessments of skeletal muscle oxidative capacity in persons with spinal cord injury. Eur J Appl Physiol 113(9):2275–2283CrossRefPubMedPubMedCentral Erickson ML, Ryan TE, Young HJ, McCully KK (2013) Near-infrared assessments of skeletal muscle oxidative capacity in persons with spinal cord injury. Eur J Appl Physiol 113(9):2275–2283CrossRefPubMedPubMedCentral
go back to reference Erickson ML, Ryan TE, Backus D, McCully KK (2017) Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve 55(5):669–675CrossRefPubMedPubMedCentral Erickson ML, Ryan TE, Backus D, McCully KK (2017) Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve 55(5):669–675CrossRefPubMedPubMedCentral
go back to reference Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol Endocrinol Metab 270(4 Pt1):E627–E633CrossRef Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol Endocrinol Metab 270(4 Pt1):E627–E633CrossRef
go back to reference Garton FC, Seto JT, Quinlan KG, Yang N, Houweling PJ, North KN (2014) Alpha-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet 23(7):1879–1893CrossRefPubMed Garton FC, Seto JT, Quinlan KG, Yang N, Houweling PJ, North KN (2014) Alpha-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet 23(7):1879–1893CrossRefPubMed
go back to reference Giangregorio LM, Hicks AL, Webber CE, Phillips SM, Craven BC, Bugaresti JM, McCartney N (2005) Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 43(11):649–657CrossRefPubMed Giangregorio LM, Hicks AL, Webber CE, Phillips SM, Craven BC, Bugaresti JM, McCartney N (2005) Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 43(11):649–657CrossRefPubMed
go back to reference Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, McCartney N (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31(3):283–291CrossRefPubMed Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, McCartney N (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31(3):283–291CrossRefPubMed
go back to reference Giangregorio L, Craven C, Richards K, Kapadia N, Hitzig SL, Masani K, Popovic MR (2012) A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med 35(5):351–360CrossRefPubMedPubMedCentral Giangregorio L, Craven C, Richards K, Kapadia N, Hitzig SL, Masani K, Popovic MR (2012) A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med 35(5):351–360CrossRefPubMedPubMedCentral
go back to reference Glancy B, Hartnell LM, Malide D, Yu ZX, Combs CA, Connelly PS, Subramaniam S, Balaban RS (2015) Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523(7562):617–620CrossRefPubMedPubMedCentral Glancy B, Hartnell LM, Malide D, Yu ZX, Combs CA, Connelly PS, Subramaniam S, Balaban RS (2015) Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523(7562):617–620CrossRefPubMedPubMedCentral
go back to reference Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM (2010) Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metab 35(2):125–133CrossRefPubMed Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM (2010) Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metab 35(2):125–133CrossRefPubMed
go back to reference Goldmann WH (2014) Mechanosensation: a basic cellular process. Prog Mol Biol Transl Sci 126:75–102CrossRefPubMed Goldmann WH (2014) Mechanosensation: a basic cellular process. Prog Mol Biol Transl Sci 126:75–102CrossRefPubMed
go back to reference Gorgey AS, Dudley GA (2007) Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 45(4):304–309CrossRefPubMed Gorgey AS, Dudley GA (2007) Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 45(4):304–309CrossRefPubMed
go back to reference Gorgey AS, Lawrence J (2016) Acute responses of functional electrical stimulation cycling on the ventilation-to-CO2 production ratio and substrate utilization after spinal cord injury. PM R 8(3):225–234CrossRefPubMed Gorgey AS, Lawrence J (2016) Acute responses of functional electrical stimulation cycling on the ventilation-to-CO2 production ratio and substrate utilization after spinal cord injury. PM R 8(3):225–234CrossRefPubMed
go back to reference Gorgey AS, Shepherd C (2010) Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord Med 33(1):90–95CrossRefPubMedPubMedCentral Gorgey AS, Shepherd C (2010) Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord Med 33(1):90–95CrossRefPubMedPubMedCentral
go back to reference Gorgey AS, Mather KJ, Cupp HR, Gater DR (2012) Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc 44(1):165–174CrossRefPubMed Gorgey AS, Mather KJ, Cupp HR, Gater DR (2012) Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc 44(1):165–174CrossRefPubMed
go back to reference Gorgey AS, Graham ZA, Bauman WA, Cardozo C, Gater DR (2017) Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. J Spinal Cord Med 40(4):439–448CrossRefPubMed Gorgey AS, Graham ZA, Bauman WA, Cardozo C, Gater DR (2017) Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. J Spinal Cord Med 40(4):439–448CrossRefPubMed
go back to reference Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, Barbat-Artigas S, Lemieux F, Taivassalo T, Morais JA, Aubertin-Leheudre M, Hepple RT (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28(4):1621–1633CrossRefPubMed Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, Barbat-Artigas S, Lemieux F, Taivassalo T, Morais JA, Aubertin-Leheudre M, Hepple RT (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28(4):1621–1633CrossRefPubMed
go back to reference Graham ZA, Qin W, Harlow LC, Ross NH, Bauman WA, Gallagher PM, Cardozo CP (2016) Focal adhesion kinase signaling is decreased 56 days following spinal cord injury in rat gastrocnemius. Spinal Cord 54:502–509CrossRefPubMed Graham ZA, Qin W, Harlow LC, Ross NH, Bauman WA, Gallagher PM, Cardozo CP (2016) Focal adhesion kinase signaling is decreased 56 days following spinal cord injury in rat gastrocnemius. Spinal Cord 54:502–509CrossRefPubMed
go back to reference Graham ZA, Harlow L, Bauman WA, Cardozo CP (2018) Alterations in mitochondrial fission, fusion, and mitophagic protein expression in the gastrocnemius of mice after a sciatic nerve transection. Muscle Nerve 58(4):592–599CrossRefPubMed Graham ZA, Harlow L, Bauman WA, Cardozo CP (2018) Alterations in mitochondrial fission, fusion, and mitophagic protein expression in the gastrocnemius of mice after a sciatic nerve transection. Muscle Nerve 58(4):592–599CrossRefPubMed
go back to reference Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282(41):30107–30119CrossRefPubMed Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282(41):30107–30119CrossRefPubMed
go back to reference Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, Ivy JL (2009) Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 19(4):614–622CrossRefPubMed Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, Ivy JL (2009) Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 19(4):614–622CrossRefPubMed
go back to reference Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831CrossRefPubMed Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831CrossRefPubMed
go back to reference Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141CrossRefPubMed Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141CrossRefPubMed
go back to reference Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA 100(12):7111–7116CrossRefPubMedPubMedCentral Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA 100(12):7111–7116CrossRefPubMedPubMedCentral
go back to reference Hepple RT (2016) Impact of aging on mitochondrial function in cardiac and skeletal muscle. Free Radic Biol Med 98:177–186CrossRefPubMed Hepple RT (2016) Impact of aging on mitochondrial function in cardiac and skeletal muscle. Free Radic Biol Med 98:177–186CrossRefPubMed
go back to reference Hesselink MK, Schrauwen-Hinderling V, Schrauwen P (2016) Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 12(11):633–645CrossRefPubMed Hesselink MK, Schrauwen-Hinderling V, Schrauwen P (2016) Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 12(11):633–645CrossRefPubMed
go back to reference Hjeltnes N, Galuska D, Björnholm M, Aksnes AK, Lannem A, Zierath JR, Wallberg-Henriksson H (1998) Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis. FASEB J 12(15):1701–1712CrossRefPubMed Hjeltnes N, Galuska D, Björnholm M, Aksnes AK, Lannem A, Zierath JR, Wallberg-Henriksson H (1998) Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis. FASEB J 12(15):1701–1712CrossRefPubMed
go back to reference Hood DA, Tryon LD, Carter HN, Kim Y, Chen CC (2016) Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 473(15):2295–2314CrossRefPubMed Hood DA, Tryon LD, Carter HN, Kim Y, Chen CC (2016) Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 473(15):2295–2314CrossRefPubMed
go back to reference Ingalls CP, Warren GL, Armstrong RB (1999) Intracellular Ca2 transients in mouse soleus muscle after hindlimb unloading and reloading. J Appl Physiol 87(1):386–390CrossRefPubMed Ingalls CP, Warren GL, Armstrong RB (1999) Intracellular Ca2 transients in mouse soleus muscle after hindlimb unloading and reloading. J Appl Physiol 87(1):386–390CrossRefPubMed
go back to reference Invernizzi M, Carda S, Rizzi M, Grana E, Squarzanti DF, Cisari C, Molinari C, Renò F (2015) Evaluation of serum myostatin and sclerostin levels in chronic spinal cord injured patients. Spinal Cord 53(8):615–620CrossRefPubMed Invernizzi M, Carda S, Rizzi M, Grana E, Squarzanti DF, Cisari C, Molinari C, Renò F (2015) Evaluation of serum myostatin and sclerostin levels in chronic spinal cord injured patients. Spinal Cord 53(8):615–620CrossRefPubMed
go back to reference Iqbal S, Ostojic O, Singh K, Joseph A, Hood DA (2013) Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle Nerve 48(6):963–970CrossRefPubMed Iqbal S, Ostojic O, Singh K, Joseph A, Hood DA (2013) Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle Nerve 48(6):963–970CrossRefPubMed
go back to reference Janostiak R, Pataki AC, Brábek J, Rösel D (2014) Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 93(10–12):445–454CrossRefPubMed Janostiak R, Pataki AC, Brábek J, Rösel D (2014) Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 93(10–12):445–454CrossRefPubMed
go back to reference Jayaraman A, Shah P, Gregory C, Bowden M, Stevens J, Bishop M, Walter G, Behrman A, Vandenborne K (2008) Locomotor training and muscle function after incomplete spinal cord injury: case series. J Spinal Cord Med 31(2):185–193CrossRefPubMedPubMedCentral Jayaraman A, Shah P, Gregory C, Bowden M, Stevens J, Bishop M, Walter G, Behrman A, Vandenborne K (2008) Locomotor training and muscle function after incomplete spinal cord injury: case series. J Spinal Cord Med 31(2):185–193CrossRefPubMedPubMedCentral
go back to reference Jeon JY, Weiss CB, Steadward RD, Ryan E, Burnham RS, Bell G, Chilibeck P, Wheeler GD (2002) Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord 40(3):110–117CrossRefPubMed Jeon JY, Weiss CB, Steadward RD, Ryan E, Burnham RS, Bell G, Chilibeck P, Wheeler GD (2002) Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord 40(3):110–117CrossRefPubMed
go back to reference Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 104(11):1240–1252CrossRefPubMedPubMedCentral Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 104(11):1240–1252CrossRefPubMedPubMedCentral
go back to reference Karam C, Yi J, Xiao Y, Dhakal K, Zhang L, Li X, Manno C, Xu J, Li K, Cheng H, Ma J, Zhou J (2017) Absence of physiological Ca2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skelet Muscle 7(1):6CrossRefPubMedPubMedCentral Karam C, Yi J, Xiao Y, Dhakal K, Zhang L, Li X, Manno C, Xu J, Li K, Cheng H, Ma J, Zhou J (2017) Absence of physiological Ca2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skelet Muscle 7(1):6CrossRefPubMedPubMedCentral
go back to reference Kavazis AN, McClung JM, Hood DA, Powers SK (2008) Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol 294(2):H928–H935CrossRefPubMed Kavazis AN, McClung JM, Hood DA, Powers SK (2008) Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol 294(2):H928–H935CrossRefPubMed
go back to reference Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK (2009) Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med 46(6):842–850CrossRefPubMedPubMedCentral Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK (2009) Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med 46(6):842–850CrossRefPubMedPubMedCentral
go back to reference Kern H, Boncompagni S, Rossini K, Mayr W, Fano G, Zanin ME, Podhorska-Okolow M, Protasi F, Carraro U (2004) Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 63(9):919–931CrossRefPubMed Kern H, Boncompagni S, Rossini K, Mayr W, Fano G, Zanin ME, Podhorska-Okolow M, Protasi F, Carraro U (2004) Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 63(9):919–931CrossRefPubMed
go back to reference Kern H, Hofer C, Modlin M, Mayr W, Vindigni V, Zampieri S, Boncompagni S, Protasi F, Carraro U (2008) Stable muscle atrophy in long-term paraplegics with complete upper motor neuron lesion from 3- to 20-year SCI. Spinal Cord 46(4):293–304CrossRefPubMed Kern H, Hofer C, Modlin M, Mayr W, Vindigni V, Zampieri S, Boncompagni S, Protasi F, Carraro U (2008) Stable muscle atrophy in long-term paraplegics with complete upper motor neuron lesion from 3- to 20-year SCI. Spinal Cord 46(4):293–304CrossRefPubMed
go back to reference Kim JA, Roy RR, Zhong H, Alaynick WA, Embler E, Jang C, Gomez G, Sonoda T, Evans RM, Edgerton VR (2015) PPAR delta preserves a high resistance to fatigue in the mouse medial gastrocnemius after spinal cord transection. Muscle Nerve 53(2):287–296CrossRefPubMedPubMedCentral Kim JA, Roy RR, Zhong H, Alaynick WA, Embler E, Jang C, Gomez G, Sonoda T, Evans RM, Edgerton VR (2015) PPAR delta preserves a high resistance to fatigue in the mouse medial gastrocnemius after spinal cord transection. Muscle Nerve 53(2):287–296CrossRefPubMedPubMedCentral
go back to reference Kjaer M, Mohr T, Biering-Sørensen F, Bangsbo J (2001) Muscle enzyme adaptation to training and tapering-off in spinal-cord-injured humans. Eur J Appl Physiol 84(5):482–486CrossRefPubMed Kjaer M, Mohr T, Biering-Sørensen F, Bangsbo J (2001) Muscle enzyme adaptation to training and tapering-off in spinal-cord-injured humans. Eur J Appl Physiol 84(5):482–486CrossRefPubMed
go back to reference Klossner S, Durieux A-C, Freyssenet D, Flueck M (2009) Mechano- transduction to muscle protein synthesis is modulated by FAK. Eur J Appl 106(3):389–398CrossRef Klossner S, Durieux A-C, Freyssenet D, Flueck M (2009) Mechano- transduction to muscle protein synthesis is modulated by FAK. Eur J Appl 106(3):389–398CrossRef
go back to reference Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47(4):333–343CrossRefPubMed Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47(4):333–343CrossRefPubMed
go back to reference Krieger DA, Tate CA, McMillin-Wood J, Booth FW (1980) Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 48(1):23–28CrossRefPubMed Krieger DA, Tate CA, McMillin-Wood J, Booth FW (1980) Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 48(1):23–28CrossRefPubMed
go back to reference Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM, Chain KH, Zhang M, Royal MA, Hoehn KL, Driscoll M, Adler PN, Wessells RJ, Saucerman JJ, Yan Z (2014) A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 289(17):12005–12015CrossRefPubMedPubMedCentral Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM, Chain KH, Zhang M, Royal MA, Hoehn KL, Driscoll M, Adler PN, Wessells RJ, Saucerman JJ, Yan Z (2014) A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 289(17):12005–12015CrossRefPubMedPubMedCentral
go back to reference Lammers G, Poelkens F, van Duijnhoven NT, Pardoel EM, Hoenderop JG, Thijssen DH, Hopman MT (2012) Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle. Am J Physiol Endocrinol Metab 303(10):E1245–E1251CrossRefPubMed Lammers G, Poelkens F, van Duijnhoven NT, Pardoel EM, Hoenderop JG, Thijssen DH, Hopman MT (2012) Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle. Am J Physiol Endocrinol Metab 303(10):E1245–E1251CrossRefPubMed
go back to reference Léger B, Senese R, Al-Khodairy AW, Dériaz O, Gobelet C, Giacobino JP, Russell AP (2009) Atrogin-1, MuRF1, and FoXO, as well as phosphorylated GSK-3beta and 4E-BP1 are reduced in skeletal muscle of chronic spinal cord-injured patients. Muscle Nerve 40(1):69–78CrossRefPubMed Léger B, Senese R, Al-Khodairy AW, Dériaz O, Gobelet C, Giacobino JP, Russell AP (2009) Atrogin-1, MuRF1, and FoXO, as well as phosphorylated GSK-3beta and 4E-BP1 are reduced in skeletal muscle of chronic spinal cord-injured patients. Muscle Nerve 40(1):69–78CrossRefPubMed
go back to reference Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565CrossRefPubMed Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565CrossRefPubMed
go back to reference Li YP, Chen Y, Li AS, Reid MB (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285(4):C806–C812CrossRefPubMed Li YP, Chen Y, Li AS, Reid MB (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285(4):C806–C812CrossRefPubMed
go back to reference Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801CrossRefPubMed Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801CrossRefPubMed
go back to reference Liu XH, Harlow L, Graham ZA, Bauman WA, Cardozo C (2017) Spinal cord injury leads to hyperoxidation and nitrosylation of skeletal muscle ryanodine receptor-1 associated with upregulation of nicotinamide adenine dinucleotide phosphate oxidase 4. J Neurotrauma 34(12):2069–2074CrossRefPubMed Liu XH, Harlow L, Graham ZA, Bauman WA, Cardozo C (2017) Spinal cord injury leads to hyperoxidation and nitrosylation of skeletal muscle ryanodine receptor-1 associated with upregulation of nicotinamide adenine dinucleotide phosphate oxidase 4. J Neurotrauma 34(12):2069–2074CrossRefPubMed
go back to reference Mahoney ET, Bickel CS, Elder C, Black C, Slade JM, Apple D Jr, Dudley GA (2005) Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil 86(7):1502–1504CrossRefPubMed Mahoney ET, Bickel CS, Elder C, Black C, Slade JM, Apple D Jr, Dudley GA (2005) Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil 86(7):1502–1504CrossRefPubMed
go back to reference Martin-Rincon M, Morales-Alamo D, Calbet JAL (2018) Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports 28(3):772–781CrossRefPubMed Martin-Rincon M, Morales-Alamo D, Calbet JAL (2018) Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports 28(3):772–781CrossRefPubMed
go back to reference Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C (2008) Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 129(9):542–549CrossRefPubMedPubMedCentral Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C (2008) Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 129(9):542–549CrossRefPubMedPubMedCentral
go back to reference Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta 1800(3):235–244CrossRefPubMed Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta 1800(3):235–244CrossRefPubMed
go back to reference Max SR (1972) Disuse atrophy of skeletal muscle: loss of functional activity of mitochondria. Biochem Biophys Res Commun 46:1394–1398CrossRefPubMed Max SR (1972) Disuse atrophy of skeletal muscle: loss of functional activity of mitochondria. Biochem Biophys Res Commun 46:1394–1398CrossRefPubMed
go back to reference McClung JM, Whidden MA, Kavazis AN, Falk DJ, Deruisseau KC, Powers SK (2008) Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 294:R1608–R1617CrossRefPubMed McClung JM, Whidden MA, Kavazis AN, Falk DJ, Deruisseau KC, Powers SK (2008) Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 294:R1608–R1617CrossRefPubMed
go back to reference Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH, Powers SK (2011) Mitochondrial-targeted antioxidants protect the skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol 111(5):1459–1466CrossRefPubMedPubMedCentral Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH, Powers SK (2011) Mitochondrial-targeted antioxidants protect the skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol 111(5):1459–1466CrossRefPubMedPubMedCentral
go back to reference Mohr T, Dela F, Handberg A, Biering-Sørensen F, Galbo H, Kjaer M (2001) Insulin action and long-term electrically induced training in individuals with spinal cord injuries. Med Sci Sports Exerc 33(8):1247–1252CrossRefPubMed Mohr T, Dela F, Handberg A, Biering-Sørensen F, Galbo H, Kjaer M (2001) Insulin action and long-term electrically induced training in individuals with spinal cord injuries. Med Sci Sports Exerc 33(8):1247–1252CrossRefPubMed
go back to reference Mounier R, Théret M, Lantier L, Foretz M, Viollet B (2015) Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab 26(6):275–286CrossRefPubMed Mounier R, Théret M, Lantier L, Foretz M, Viollet B (2015) Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab 26(6):275–286CrossRefPubMed
go back to reference Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H (2007) Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol 293(3):R1159–R1168CrossRefPubMed Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H (2007) Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol 293(3):R1159–R1168CrossRefPubMed
go back to reference Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275(7):4545–4548CrossRefPubMed Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275(7):4545–4548CrossRefPubMed
go back to reference O’Brien LC, Chen Q, Savas J, Lesnefsky EJ, Gorgey AS (2017a) Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury. Eur J Appl Physiol 117(11):2137–2147CrossRefPubMed O’Brien LC, Chen Q, Savas J, Lesnefsky EJ, Gorgey AS (2017a) Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury. Eur J Appl Physiol 117(11):2137–2147CrossRefPubMed
go back to reference O’Brien LC, Wade RC, Segal L, Chen Q, Savas J, Lesnefsky EJ, Gorgey AS (2017b) Mitochondrial mass and activity as a function of body composition in individuals with spinal cord injury. Physiol Rep 5(3):e13080CrossRefPubMedPubMedCentral O’Brien LC, Wade RC, Segal L, Chen Q, Savas J, Lesnefsky EJ, Gorgey AS (2017b) Mitochondrial mass and activity as a function of body composition in individuals with spinal cord injury. Physiol Rep 5(3):e13080CrossRefPubMedPubMedCentral
go back to reference Ohnishi T, Ohnishi ST, Shinzawa-Itoh K, Yoshikawa S, Weber RT (2012) EPR detection of two protein-associated ubiquinone components (SQ(Nf) and SQ(Ns)) in the membrane in situ and in proteoliposomes of isolated bovine heart complex I. Biochim Biophys Acta 1817(10):1803–1809CrossRefPubMed Ohnishi T, Ohnishi ST, Shinzawa-Itoh K, Yoshikawa S, Weber RT (2012) EPR detection of two protein-associated ubiquinone components (SQ(Nf) and SQ(Ns)) in the membrane in situ and in proteoliposomes of isolated bovine heart complex I. Biochim Biophys Acta 1817(10):1803–1809CrossRefPubMed
go back to reference Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746CrossRefPubMed Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746CrossRefPubMed
go back to reference Papa S (1996) Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiological implications. Biochim Biophys Acta 1276(2):87–105CrossRefPubMed Papa S (1996) Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiological implications. Biochim Biophys Acta 1276(2):87–105CrossRefPubMed
go back to reference Petrie MA, Suneja M, Faidley E, Shields RK (2014) A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One 9(12):e115791CrossRefPubMedPubMedCentral Petrie MA, Suneja M, Faidley E, Shields RK (2014) A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One 9(12):e115791CrossRefPubMedPubMedCentral
go back to reference Petrie M, Suneja M, Shields RK (2015) Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. J Appl Physiol (1985) 118:723–731CrossRef Petrie M, Suneja M, Shields RK (2015) Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. J Appl Physiol (1985) 118:723–731CrossRef
go back to reference Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94(2):252–258CrossRefPubMed Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94(2):252–258CrossRefPubMed
go back to reference Phillips SM (2009) Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Appl Physiol Nutr Metab 34(3):403–410CrossRefPubMed Phillips SM (2009) Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Appl Physiol Nutr Metab 34(3):403–410CrossRefPubMed
go back to reference Phillips SM, Stewart BG, Mahoney DJ, Hicks AL, McCartney N, Tang JE, Wilkinson SB, Armstrong D, Tarnopolsky MA (2004) Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. J Appl Physiol (1985) 97(2):716–724CrossRef Phillips SM, Stewart BG, Mahoney DJ, Hicks AL, McCartney N, Tang JE, Wilkinson SB, Armstrong D, Tarnopolsky MA (2004) Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. J Appl Physiol (1985) 97(2):716–724CrossRef
go back to reference Phillips SM, Glover EI, Rennie MJ (2009) Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol 107(3):645–654CrossRefPubMed Phillips SM, Glover EI, Rennie MJ (2009) Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol 107(3):645–654CrossRefPubMed
go back to reference Plant PJ, Bain JR, Correa JE, Woo M, Batt J (2009) Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy. J Appl Physiol (1985) 107(1):224–234CrossRef Plant PJ, Bain JR, Correa JE, Woo M, Batt J (2009) Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy. J Appl Physiol (1985) 107(1):224–234CrossRef
go back to reference Pollock N, Staunton CA, Vasilaki A, McArdle A, Jackson MJ (2017) Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: role in muscle aging. Free Radic Biol Med 112:84–92CrossRefPubMedPubMedCentral Pollock N, Staunton CA, Vasilaki A, McArdle A, Jackson MJ (2017) Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: role in muscle aging. Free Radic Biol Med 112:84–92CrossRefPubMedPubMedCentral
go back to reference Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB (2015) Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc 47(9):1922–1931CrossRefPubMedPubMedCentral Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB (2015) Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc 47(9):1922–1931CrossRefPubMedPubMedCentral
go back to reference Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN, Smuder AJ (2011a) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39(7):1749–1759CrossRefPubMedPubMedCentral Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN, Smuder AJ (2011a) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39(7):1749–1759CrossRefPubMedPubMedCentral
go back to reference Powers SK, Ji LL, Kavazis AN, Jackson MJ (2011b) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1(2):941–969PubMedPubMedCentral Powers SK, Ji LL, Kavazis AN, Jackson MJ (2011b) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1(2):941–969PubMedPubMedCentral
go back to reference Powers SK, Smuder AJ, Criswell DS (2011c) Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 15(9):2519–2528CrossRefPubMedPubMedCentral Powers SK, Smuder AJ, Criswell DS (2011c) Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 15(9):2519–2528CrossRefPubMedPubMedCentral
go back to reference Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 303(1):E31–E39CrossRefPubMedPubMedCentral Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 303(1):E31–E39CrossRefPubMedPubMedCentral
go back to reference Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2014) Anabolic steroids activate calcineurin-NFAT signaling and thereby increase myotube size and reduce denervation atrophy. Mol Cell Endocrinol 399:336–345CrossRefPubMed Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2014) Anabolic steroids activate calcineurin-NFAT signaling and thereby increase myotube size and reduce denervation atrophy. Mol Cell Endocrinol 399:336–345CrossRefPubMed
go back to reference Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578CrossRefPubMed Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578CrossRefPubMed
go back to reference Rochester L, Barron MJ, Chandler CS, Sutton RA, Miller S, Johnson MA (1995) Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia 33(9):514–522PubMed Rochester L, Barron MJ, Chandler CS, Sutton RA, Miller S, Johnson MA (1995) Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia 33(9):514–522PubMed
go back to reference Romanello V, Sandri M (2010) Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 12(6):433–439CrossRefPubMed Romanello V, Sandri M (2010) Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 12(6):433–439CrossRefPubMed
go back to reference Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29(10):1774–1785CrossRefPubMedPubMedCentral Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29(10):1774–1785CrossRefPubMedPubMedCentral
go back to reference Roy RR, Zhong H, Monti RJ, Vallance KA, Edgerton VR (2002) Mechanical properties of the electrically silent adult rat soleus muscle. Muscle Nerve 26:404–412CrossRefPubMed Roy RR, Zhong H, Monti RJ, Vallance KA, Edgerton VR (2002) Mechanical properties of the electrically silent adult rat soleus muscle. Muscle Nerve 26:404–412CrossRefPubMed
go back to reference Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331CrossRefPubMedPubMedCentral Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331CrossRefPubMedPubMedCentral
go back to reference Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751–E760CrossRefPubMedPubMedCentral Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751–E760CrossRefPubMedPubMedCentral
go back to reference Russo TL, Peviani SM, Durigan JL, Gigo-Benato D, Delfino GB, Salvini TF (2010) Stretching and electrical stimulation reduce the accumulation of MyoD, myostatin and atrogin-1 in denervated rat skeletal muscle. J Muscle Res Cell Motil 31(1):45–57CrossRefPubMed Russo TL, Peviani SM, Durigan JL, Gigo-Benato D, Delfino GB, Salvini TF (2010) Stretching and electrical stimulation reduce the accumulation of MyoD, myostatin and atrogin-1 in denervated rat skeletal muscle. J Muscle Res Cell Motil 31(1):45–57CrossRefPubMed
go back to reference Ryan TE, Brizendine JT, Backus D, McCully KK (2013) Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil 94(11):2166–2173CrossRefPubMed Ryan TE, Brizendine JT, Backus D, McCully KK (2013) Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil 94(11):2166–2173CrossRefPubMed
go back to reference Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103(44):16260–16265CrossRefPubMedPubMedCentral Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103(44):16260–16265CrossRefPubMedPubMedCentral
go back to reference Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K, Kunkel C, Scremin OU (1999) Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80(12):1531–1536CrossRefPubMed Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K, Kunkel C, Scremin OU (1999) Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80(12):1531–1536CrossRefPubMed
go back to reference Shah PK, Ye F, Liu M, Jayaraman A, Baligand C, Walter G, Vandenborne K (2014) In vivo (31)P NMR spectroscopy assessment of skeletal muscle bioenergetics after spinal cord contusion in rats. Eur J Appl Physiol 114(4):847–858CrossRefPubMedPubMedCentral Shah PK, Ye F, Liu M, Jayaraman A, Baligand C, Walter G, Vandenborne K (2014) In vivo (31)P NMR spectroscopy assessment of skeletal muscle bioenergetics after spinal cord contusion in rats. Eur J Appl Physiol 114(4):847–858CrossRefPubMedPubMedCentral
go back to reference Singh K, Hood DA (2011) Effect of denervation-induced muscle disuse on mitochondrial protein import. Am J Physiol Cell Physiol 300(1):C138–C145CrossRefPubMed Singh K, Hood DA (2011) Effect of denervation-induced muscle disuse on mitochondrial protein import. Am J Physiol Cell Physiol 300(1):C138–C145CrossRefPubMed
go back to reference Stewart BG1, Tarnopolsky MA, Hicks AL, McCartney N, Mahoney DJ, Staron RS, Phillips SM. (2004) Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle Nerve. 30(1):61–68CrossRefPubMed Stewart BG1, Tarnopolsky MA, Hicks AL, McCartney N, Mahoney DJ, Staron RS, Phillips SM. (2004) Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle Nerve. 30(1):61–68CrossRefPubMed
go back to reference Stolle S, Ciapaite J, Reijne AC, Talarovicova A, Wolters JC, Aguirre-Gamboa R, van der Vlies P, de Lange K, Neerincx PB, van der Vries G, Deelen P, Swertz MA, Li Y, Bischoff R, Permentier HP, Horvatovitch PL, Groen AK, van Dijk G, Reijngoud DJ, Bakker BM (2018) Running-wheel activity delays mitochondrial respiratory flux decline in aging mouse muscle via a post-transcriptional mechanism. Aging Cell. 17(1) Stolle S, Ciapaite J, Reijne AC, Talarovicova A, Wolters JC, Aguirre-Gamboa R, van der Vlies P, de Lange K, Neerincx PB, van der Vries G, Deelen P, Swertz MA, Li Y, Bischoff R, Permentier HP, Horvatovitch PL, Groen AK, van Dijk G, Reijngoud DJ, Bakker BM (2018) Running-wheel activity delays mitochondrial respiratory flux decline in aging mouse muscle via a post-transcriptional mechanism. Aging Cell. 17(1)
go back to reference St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408CrossRefPubMed St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408CrossRefPubMed
go back to reference Talmadge RJ, Castro MJ, Apple DF Jr, Dudley GA (2002) Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol (1985) 92(1):147–154CrossRef Talmadge RJ, Castro MJ, Apple DF Jr, Dudley GA (2002) Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol (1985) 92(1):147–154CrossRef
go back to reference Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA (2008) Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985) 105(3):902–906CrossRefPubMedCentral Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA (2008) Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985) 105(3):902–906CrossRefPubMedCentral
go back to reference Tischler ME, Rosenberg S, Satarug S, Henriksen EJ, Kirby CR, Tome M, Chase P (1990) Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 39(7):756–763CrossRefPubMed Tischler ME, Rosenberg S, Satarug S, Henriksen EJ, Kirby CR, Tome M, Chase P (1990) Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 39(7):756–763CrossRefPubMed
go back to reference Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA (2015) PGC-1alpha modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle 5:9CrossRefPubMedPubMedCentral Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA (2015) PGC-1alpha modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle 5:9CrossRefPubMedPubMedCentral
go back to reference Wade RC, Gorgey AS (2017) Anthropometric prediction of skeletal muscle cross-sectional area in persons with spinal cord injury. J Appl Physiol (1985) 122(5):1255–1261CrossRef Wade RC, Gorgey AS (2017) Anthropometric prediction of skeletal muscle cross-sectional area in persons with spinal cord injury. J Appl Physiol (1985) 122(5):1255–1261CrossRef
go back to reference Walsh B, Hooks RB, Hornyak JE, Koch LG, Britton SL, Hogan MC (2006) Enhanced mitochondrial sensitivity to creatine in rats bred for high aerobic capacity. J Appl Physiol (1985) 100(6):1765–1769CrossRef Walsh B, Hooks RB, Hornyak JE, Koch LG, Britton SL, Hogan MC (2006) Enhanced mitochondrial sensitivity to creatine in rats bred for high aerobic capacity. J Appl Physiol (1985) 100(6):1765–1769CrossRef
go back to reference Wanga Y, Pessina JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16(3):243–250CrossRef Wanga Y, Pessina JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16(3):243–250CrossRef
go back to reference Weiss N, Andrianjafiniony T, Dupre-Aucouturier S, Pouvreau S, Desplanches D, Jacquemond V (2010) Altered myoplasmic Ca(2) handling in rat fast-twitch skeletal muscle fibres during disuse atrophy. Pflügers Arch 459(4):631–644CrossRefPubMed Weiss N, Andrianjafiniony T, Dupre-Aucouturier S, Pouvreau S, Desplanches D, Jacquemond V (2010) Altered myoplasmic Ca(2) handling in rat fast-twitch skeletal muscle fibres during disuse atrophy. Pflügers Arch 459(4):631–644CrossRefPubMed
go back to reference Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK (2010) Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol (1985) 108(5):1376–1382CrossRef Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK (2010) Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol (1985) 108(5):1376–1382CrossRef
go back to reference Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R, Williams RS (2001) Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20(22):6414–6423CrossRefPubMedPubMedCentral Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R, Williams RS (2001) Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20(22):6414–6423CrossRefPubMedPubMedCentral
go back to reference Wu Y, Zhao J, Zhao W, Pan J, Bauman WA, Cardozo CP (2012) Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury. J Neurotrauma 29(8):1663–1675CrossRefPubMedPubMedCentral Wu Y, Zhao J, Zhao W, Pan J, Bauman WA, Cardozo CP (2012) Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury. J Neurotrauma 29(8):1663–1675CrossRefPubMedPubMedCentral
go back to reference Wu Y, Collier L, Qin W, Creasey G, Bauman WA, Jarvis J, Cardozo C (2013) Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection. BMC Neurosci 14:81CrossRefPubMedPubMedCentral Wu Y, Collier L, Qin W, Creasey G, Bauman WA, Jarvis J, Cardozo C (2013) Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection. BMC Neurosci 14:81CrossRefPubMedPubMedCentral
go back to reference Yarar-Fisher C, Bickel CS, Kelly NA, Windham ST, McLain AB, Bamman MM (2014) Mechanosensitivity may be enhanced in skeletal muscles of spinal cord-injured versus able-bodied men. Muscle Nerve 50(4):599–601CrossRefPubMedPubMedCentral Yarar-Fisher C, Bickel CS, Kelly NA, Windham ST, McLain AB, Bamman MM (2014) Mechanosensitivity may be enhanced in skeletal muscles of spinal cord-injured versus able-bodied men. Muscle Nerve 50(4):599–601CrossRefPubMedPubMedCentral
go back to reference Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6(8):657–663CrossRefPubMed Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6(8):657–663CrossRefPubMed
go back to reference Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103(8):2653–2658CrossRefPubMedPubMedCentral Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103(8):2653–2658CrossRefPubMedPubMedCentral
go back to reference Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79(2):341–351CrossRefPubMed Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79(2):341–351CrossRefPubMed
go back to reference Yu T, Jhun BS, Yoon Y (2011) High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal 14(3):425–437CrossRefPubMedPubMedCentral Yu T, Jhun BS, Yoon Y (2011) High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal 14(3):425–437CrossRefPubMedPubMedCentral
go back to reference Zeman RJ, Zhao J, Zhang Y, Zhao W, Wen X, Wu Y, Pan J, Bauman WA, Cardozo C (2009) Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflugers Arch 458(3):525–535CrossRefPubMed Zeman RJ, Zhao J, Zhang Y, Zhao W, Wen X, Wu Y, Pan J, Bauman WA, Cardozo C (2009) Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflugers Arch 458(3):525–535CrossRefPubMed
go back to reference Zhao J, Su Z, Qu C, Dong Y (2017) Effects of 12 Weeks Resistance Training on Serum Irisin in Older Male Adults. Front Physiol 8:171PubMedPubMedCentral Zhao J, Su Z, Qu C, Dong Y (2017) Effects of 12 Weeks Resistance Training on Serum Irisin in Older Male Adults. Front Physiol 8:171PubMedPubMedCentral
Metadata
Title
Mitochondrial health and muscle plasticity after spinal cord injury
Authors
Ashraf S. Gorgey
Oksana Witt
Laura O’Brien
Christopher Cardozo
Qun Chen
Edward J. Lesnefsky
Zachary A. Graham
Publication date
01-02-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 2/2019
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-018-4039-0

Other articles of this Issue 2/2019

European Journal of Applied Physiology 2/2019 Go to the issue