Skip to main content
Top
Published in: European Journal of Applied Physiology 3/2018

01-03-2018 | Invited Review

The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis

Authors: Felipe Damas, Cleiton A. Libardi, Carlos Ugrinowitsch

Published in: European Journal of Applied Physiology | Issue 3/2018

Login to get access

Abstract

Resistance training (RT)-induced skeletal muscle hypertrophy is a highly intricate process. Despite substantial advances, we are far from understanding exactly how muscle hypertrophy develops during RT. The aim of the present review is to discuss new insights related to the role of skeletal muscle damage and muscle protein synthesis (MPS) in mediating RT-induced hypertrophy. Specifically, the thesis that in the early phase of RT (≤ 4 previous RT sessions) increases in muscle cross-sectional area are mostly attributable to muscle damage-induced muscle swelling; then (after ~ 10 sessions), a modest magnitude of muscle hypertrophy ensues; but only during a latter phase of RT (after ~ 18 sessions) is true muscle hypertrophy observed. We argue that the initial increases in MPS post-RT are likely directed to muscle repair and remodelling due to damage, and do not correlate with eventual muscle hypertrophy induced by several RT weeks. Increases in MPS post-RT session only contribute to muscle hypertrophy after a progressive attenuation of muscle damage, and even more significantly when damage is minimal. Furthermore, RT protocols that do not promote significant muscle damage still induce similar muscle hypertrophy and strength gains compared to conditions that do promote initial muscle damage. Thus, we conclude that muscle damage is not the process that mediates or potentiates RT-induced muscle hypertrophy.
Literature
go back to reference Abraham WM (1977) Factors in delayed muscle soreness. Med Sci Sports 9:11–20PubMed Abraham WM (1977) Factors in delayed muscle soreness. Med Sci Sports 9:11–20PubMed
go back to reference Ackley BJ, Swan BA, Ladwig G, Tucker S (2008) Evidence-based nursing care guidelines: medical-surgical interventions. Mosby Elsevier, St. Louis Ackley BJ, Swan BA, Ladwig G, Tucker S (2008) Evidence-based nursing care guidelines: medical-surgical interventions. Mosby Elsevier, St. Louis
go back to reference Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2005) Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. J Strength Cond Res 19:572–582PubMed Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2005) Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. J Strength Cond Res 19:572–582PubMed
go back to reference Aschenbach WG, Sakamoto K, Goodyear LJ (2004) 5′ adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Med 34:91–103PubMedCrossRef Aschenbach WG, Sakamoto K, Goodyear LJ (2004) 5′ adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Med 34:91–103PubMedCrossRef
go back to reference Beaton LJ, Tarnopolsky MA, Phillips SM (2002a) Contraction-induced muscle damage in humans following calcium channel blocker administration. J Physiol 544:849–859 pii]PubMedPubMedCentralCrossRef Beaton LJ, Tarnopolsky MA, Phillips SM (2002a) Contraction-induced muscle damage in humans following calcium channel blocker administration. J Physiol 544:849–859 pii]PubMedPubMedCentralCrossRef
go back to reference Beaton LJ, Tarnopolsky MA, Phillips SM (2002b) Variability in estimating eccentric contraction-induced muscle damage and inflammation in humans. Can J Appl Physiol 27:516–526PubMedCrossRef Beaton LJ, Tarnopolsky MA, Phillips SM (2002b) Variability in estimating eccentric contraction-induced muscle damage and inflammation in humans. Can J Appl Physiol 27:516–526PubMedCrossRef
go back to reference Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268:E514–E520PubMed Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268:E514–E520PubMed
go back to reference Biolo G, Tipton KD, Klein S, Wolfe RR (1997) An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 273:E122–E129PubMed Biolo G, Tipton KD, Klein S, Wolfe RR (1997) An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 273:E122–E129PubMed
go back to reference Brandenburg JP, Docherty D (2002) The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J Strength Cond Res 16:25–32PubMed Brandenburg JP, Docherty D (2002) The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J Strength Cond Res 16:25–32PubMed
go back to reference Brook MS et al (2015) Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J 29:4485–4496. https://doi.org/10.1096/fj.15-273755 PubMedCrossRef Brook MS et al (2015) Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J 29:4485–4496. https://​doi.​org/​10.​1096/​fj.​15-273755 PubMedCrossRef
go back to reference Cao Y, Zhao Z, Gruszczynska-Biegala J, Zolkiewska A (2003) Role of metalloprotease disintegrin ADAM12 in determination of quiescent reserve cells during myogenic differentiation in vitro. Mol Cell Biol 23:6725–6738PubMedPubMedCentralCrossRef Cao Y, Zhao Z, Gruszczynska-Biegala J, Zolkiewska A (2003) Role of metalloprotease disintegrin ADAM12 in determination of quiescent reserve cells during myogenic differentiation in vitro. Mol Cell Biol 23:6725–6738PubMedPubMedCentralCrossRef
go back to reference Cheek DB (1985) The control of cell mass and replication. The DNA unit—a personal 20-year study. Early Hum Dev 12:211–239PubMedCrossRef Cheek DB (1985) The control of cell mass and replication. The DNA unit—a personal 20-year study. Early Hum Dev 12:211–239PubMedCrossRef
go back to reference Cramer JT, Palmer IJ, Ryan ED, Herda TJ, Bemben DA, Bemben MG, Stratemeier PH (2007) Validity and reliability of a peripheral quantitative computed tomography scanner for measuring muscle cross-sectional area. Annual Meeting of the American College of Sports Medicine, Medicine and Science in Sports and Exercise 39(Supplement), New Orleans Cramer JT, Palmer IJ, Ryan ED, Herda TJ, Bemben DA, Bemben MG, Stratemeier PH (2007) Validity and reliability of a peripheral quantitative computed tomography scanner for measuring muscle cross-sectional area. Annual Meeting of the American College of Sports Medicine, Medicine and Science in Sports and Exercise 39(Supplement), New Orleans
go back to reference Damas F et al (under review) Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men Damas F et al (under review) Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men
go back to reference Foley JM, Jayaraman RC, Prior BM, Pivarnik JM, Meyer RA (1999) MR measurements of muscle damage and adaptation after eccentric exercise. J Appl Physiol (1985) 87:2311–2318CrossRef Foley JM, Jayaraman RC, Prior BM, Pivarnik JM, Meyer RA (1999) MR measurements of muscle damage and adaptation after eccentric exercise. J Appl Physiol (1985) 87:2311–2318CrossRef
go back to reference Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37:145–168PubMedCrossRef Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37:145–168PubMedCrossRef
go back to reference Folland JP, Chong J, Copeman EM, Jones DA (2001) Acute muscle damage as a stimulus for training-induced gains in strength. Med Sci Sports Exerc 33:1200–1205PubMedCrossRef Folland JP, Chong J, Copeman EM, Jones DA (2001) Acute muscle damage as a stimulus for training-induced gains in strength. Med Sci Sports Exerc 33:1200–1205PubMedCrossRef
go back to reference Gibala MJ, MacDougall JD, Tarnopolsky MA, Stauber WT, Elorriaga A (1995) Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol (1985) 78:702–708CrossRef Gibala MJ, MacDougall JD, Tarnopolsky MA, Stauber WT, Elorriaga A (1995) Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol (1985) 78:702–708CrossRef
go back to reference Gibala MJ, Interisano SA, Tarnopolsky MA, Roy BD, MacDonald JR, Yarasheski KE, MacDougall JD (2000) Myofibrillar disruption following acute concentric and eccentric resistance exercise in strength-trained men. Can J Physiol Pharmacol 78:656–661PubMedCrossRef Gibala MJ, Interisano SA, Tarnopolsky MA, Roy BD, MacDonald JR, Yarasheski KE, MacDougall JD (2000) Myofibrillar disruption following acute concentric and eccentric resistance exercise in strength-trained men. Can J Physiol Pharmacol 78:656–661PubMedCrossRef
go back to reference Gonzalez-Izal M, Lusa Cadore E, Izquierdo M (2014) Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue. Muscle Nerve 49:389–397PubMedCrossRef Gonzalez-Izal M, Lusa Cadore E, Izquierdo M (2014) Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue. Muscle Nerve 49:389–397PubMedCrossRef
go back to reference Goreham C, Green HJ, Ball-Burnett M, Ranney D (1999) High-resistance training and muscle metabolism during prolonged exercise. Am J Physiol 276:E489–E496PubMed Goreham C, Green HJ, Ball-Burnett M, Ranney D (1999) High-resistance training and muscle metabolism during prolonged exercise. Am J Physiol 276:E489–E496PubMed
go back to reference Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D (1999) Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol 276:R591–R596PubMed Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D (1999) Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol 276:R591–R596PubMed
go back to reference Halkjaer-Kristensen J, Ingemann-Hansen T (1981) Variations in single fibre areas and fibre composition in needle biopsies from the human quadriceps muscle. Scand J Clin Lab Invest 41:391–395PubMedCrossRef Halkjaer-Kristensen J, Ingemann-Hansen T (1981) Variations in single fibre areas and fibre composition in needle biopsies from the human quadriceps muscle. Scand J Clin Lab Invest 41:391–395PubMedCrossRef
go back to reference Hess DR (2004) What is evidence-based medicine and why should I care? Respir Care 49:730–741PubMed Hess DR (2004) What is evidence-based medicine and why should I care? Respir Care 49:730–741PubMed
go back to reference Hortobagyi T, Hill JP, Houmard JA, Fraser DD, Lambert NJ, Israel RG (1996) Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol (1985) 80:765–772CrossRef Hortobagyi T, Hill JP, Houmard JA, Fraser DD, Lambert NJ, Israel RG (1996) Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol (1985) 80:765–772CrossRef
go back to reference Kamen G, Knight CA (2004) Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 59:1334–1338PubMedCrossRef Kamen G, Knight CA (2004) Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 59:1334–1338PubMedCrossRef
go back to reference Mahon M, Toman A, Willan PL, Bagnall KM (1984) Variability of histochemical and morphometric data from needle biopsy specimens of human quadriceps femoris muscle. J Neurol Sci 63:85–100PubMedCrossRef Mahon M, Toman A, Willan PL, Bagnall KM (1984) Variability of histochemical and morphometric data from needle biopsy specimens of human quadriceps femoris muscle. J Neurol Sci 63:85–100PubMedCrossRef
go back to reference McKeon PO, Medina JM, Hertel J (2006) Hierarchy of research design in evidence-based sports medicine. Int J Athl Ther Train 11:42–45 McKeon PO, Medina JM, Hertel J (2006) Hierarchy of research design in evidence-based sports medicine. Int J Athl Ther Train 11:42–45
go back to reference Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130PubMed Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130PubMed
go back to reference Nosaka K, Clarkson PM (1996) Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 28:953–961PubMedCrossRef Nosaka K, Clarkson PM (1996) Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 28:953–961PubMedCrossRef
go back to reference Nosaka K, Newton M (2002) Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc 34:63–69PubMedCrossRef Nosaka K, Newton M (2002) Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc 34:63–69PubMedCrossRef
go back to reference Nosaka K, Sakamoto K (2001) Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med Sci Sports Exerc 33:22–29PubMedCrossRef Nosaka K, Sakamoto K (2001) Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med Sci Sports Exerc 33:22–29PubMedCrossRef
go back to reference Nosaka K, Clarkson PM, McGuiggin ME, Byrne JM (1991) Time course of muscle adaptation after high force eccentric exercise. Eur J Appl Physiol Occup Physiol 63:70–76PubMedCrossRef Nosaka K, Clarkson PM, McGuiggin ME, Byrne JM (1991) Time course of muscle adaptation after high force eccentric exercise. Eur J Appl Physiol Occup Physiol 63:70–76PubMedCrossRef
go back to reference Nosaka K, Newton M, Sacco P (2002) Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sports 12:337–346PubMedCrossRef Nosaka K, Newton M, Sacco P (2002) Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sports 12:337–346PubMedCrossRef
go back to reference Nosaka K, Lavender A, Newton M, Sacco P (2003) Muscle damage in resistance training—is muscle damage necessary for strength gain and muscle hypertrophy? Int J Sport Health Sci 1:1–8CrossRef Nosaka K, Lavender A, Newton M, Sacco P (2003) Muscle damage in resistance training—is muscle damage necessary for strength gain and muscle hypertrophy? Int J Sport Health Sci 1:1–8CrossRef
go back to reference Nosaka K, Newton MJ, Sacco P (2005) Attenuation of protective effect against eccentric exercise-induced muscle damage. Can J Appl Physiol 30:529–542PubMedCrossRef Nosaka K, Newton MJ, Sacco P (2005) Attenuation of protective effect against eccentric exercise-induced muscle damage. Can J Appl Physiol 30:529–542PubMedCrossRef
go back to reference Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMed Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMed
go back to reference Peake J, Nosaka K, Suzuki K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85PubMed Peake J, Nosaka K, Suzuki K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85PubMed
go back to reference Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273:E99–E107PubMed Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273:E99–E107PubMed
go back to reference Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276:E118–E124PubMed Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276:E118–E124PubMed
go back to reference Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA (2002) Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 80:1045–1053PubMedCrossRef Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA (2002) Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 80:1045–1053PubMedCrossRef
go back to reference Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537:333–345PubMedPubMedCentralCrossRef Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537:333–345PubMedPubMedCentralCrossRef
go back to reference Puddy RW, Wilkins N (2011) Understanding evidence Part 1: best available research evidence. A Guide to the Continuum of Evidence of Efectiveness, Atlanta Puddy RW, Wilkins N (2011) Understanding evidence Part 1: best available research evidence. A Guide to the Continuum of Evidence of Efectiveness, Atlanta
go back to reference Raastad T et al (2010) Changes in calpain activity, muscle structure, and function after eccentric exercise. Med Sci Sports Exerc 42:86–95PubMedCrossRef Raastad T et al (2010) Changes in calpain activity, muscle structure, and function after eccentric exercise. Med Sci Sports Exerc 42:86–95PubMedCrossRef
go back to reference Sorichter S, Puschendorf B, Mair J (1999) Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev 5:5–21PubMed Sorichter S, Puschendorf B, Mair J (1999) Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev 5:5–21PubMed
go back to reference Tesch P (1980) Muscle fatigue in man. With special reference to lactate accumulation during short term intense exercise. Acta Physiol Scand Suppl 480:1–40PubMed Tesch P (1980) Muscle fatigue in man. With special reference to lactate accumulation during short term intense exercise. Acta Physiol Scand Suppl 480:1–40PubMed
go back to reference Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59PubMedCrossRef Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59PubMedCrossRef
go back to reference Wernbom M, Augustsson J, Thomee R (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37:225–264PubMedCrossRef Wernbom M, Augustsson J, Thomee R (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37:225–264PubMedCrossRef
go back to reference Young A, Hughes I, Round JM, Edwards RH (1982) The effect of knee injury on the number of muscle fibres in the human quadriceps femoris. Clin Sci (Lond) 62:227–234CrossRef Young A, Hughes I, Round JM, Edwards RH (1982) The effect of knee injury on the number of muscle fibres in the human quadriceps femoris. Clin Sci (Lond) 62:227–234CrossRef
Metadata
Title
The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis
Authors
Felipe Damas
Cleiton A. Libardi
Carlos Ugrinowitsch
Publication date
01-03-2018
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 3/2018
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-017-3792-9

Other articles of this Issue 3/2018

European Journal of Applied Physiology 3/2018 Go to the issue