Skip to main content
Top
Published in: Journal of Neurology 8/2023

17-04-2023 | Multiple Sclerosis | Original Communication

Multiple sclerosis optic neuritis and trans-synaptic pathology on cortical thinning in people with multiple sclerosis

Authors: Ranjani Ganapathy Subramanian, Robert Zivadinov, Niels Bergsland, Michael G. Dwyer, Bianca Weinstock-Guttman, Dejan Jakimovski

Published in: Journal of Neurology | Issue 8/2023

Login to get access

Abstract

Background

The multi-order visual system represents an excellent testing site regarding the process of trans-synaptic degeneration. The presence and extent of global versus trans-synaptic neurodegeneration in people with multiple sclerosis (pwMS) is not clear.

Objective

To explore cross-sectional and longitudinal relationships between retinal, thalamic and cortical changes in pwMS with and without MS-related optic neuritis (pwMSON and pwoMSON) using MRI and optical coherence tomography (OCT).

Methods

162 pwMS and 47 healthy controls (HCs) underwent OCT and brain MRI at baseline and 5.5-years follow-up. Peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell inner plexiform layer (mGCIPL) thicknesses were determined. Global volume measures of brain parenchymal volume (BPV)/percent brain volume change (PBVC), thalamic volume and T2-lesion volume (LV) were derived using standard analysis protocols. Regional cortical thickness was determined using FreeSurfer. Cross-sectional and longitudinal relationship between the retinal measures, thalamic volume and cortical thickness were assessed using age, BPV/PBVC and T2-LV adjusted correlations and regressions.

Results

After age, BPV and T2-LV adjustment, the thalamic volume explained additional variance in the thickness of pericalcarine (R2 increase of 0.066, standardized β = 0.299, p = 0.039) and lateral occipital (R2 increase of 0.024, standardized β = 0.299, p = 0.039) gyrii in pwMSON. In pwoMSON, the thalamic volume was a significant predictor only of control (frontal) regions of pars opercularis. There was no relationship between thalamic atrophy and cortical thinning over the follow-up in both pwMS with and without MSON. While numerically lower in the pwMSON group, the inter-eye difference was not able to predict the presence of MSON.

Conclusions

MSON can induce a measurable amount of trans-synaptic pathology on second-order cortical regions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636PubMedCrossRef Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636PubMedCrossRef
2.
go back to reference Benedict RHB, Amato MP, DeLuca J, Geurts JJG (2020) Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 19:860–871PubMedPubMedCentralCrossRef Benedict RHB, Amato MP, DeLuca J, Geurts JJG (2020) Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 19:860–871PubMedPubMedCentralCrossRef
4.
go back to reference Sanchez-Dalmau B, Martinez-Lapiscina EH, Torres-Torres R et al (2018) Early retinal atrophy predicts long-term visual impairment after acute optic neuritis. Mult Scler 24:1196–1204PubMedCrossRef Sanchez-Dalmau B, Martinez-Lapiscina EH, Torres-Torres R et al (2018) Early retinal atrophy predicts long-term visual impairment after acute optic neuritis. Mult Scler 24:1196–1204PubMedCrossRef
5.
go back to reference Balcer LJ, Miller DH, Reingold SC, Cohen JA (2015) Vision and vision-related outcome measures in multiple sclerosis. Brain 138:11–27PubMedCrossRef Balcer LJ, Miller DH, Reingold SC, Cohen JA (2015) Vision and vision-related outcome measures in multiple sclerosis. Brain 138:11–27PubMedCrossRef
6.
go back to reference Henderson AP, Altmann DR, Trip AS et al (2010) A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 133:2592–2602PubMedCrossRef Henderson AP, Altmann DR, Trip AS et al (2010) A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 133:2592–2602PubMedCrossRef
7.
go back to reference University of California SFMSET, Cree BAC, Hollenbach JA, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 2019;85:653–666. University of California SFMSET, Cree BAC, Hollenbach JA, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 2019;85:653–666.
8.
go back to reference Hemond CC, Bakshi R. Magnetic Resonance Imaging in Multiple Sclerosis. Cold Spring Harb Perspect Med 2018;8. Hemond CC, Bakshi R. Magnetic Resonance Imaging in Multiple Sclerosis. Cold Spring Harb Perspect Med 2018;8.
9.
go back to reference Petzold A, Balcer LJ, Calabresi PA et al (2017) Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 16:797–812PubMedCrossRef Petzold A, Balcer LJ, Calabresi PA et al (2017) Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 16:797–812PubMedCrossRef
10.
go back to reference Petzold A, de Boer JF, Schippling S et al (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9:921–932PubMedCrossRef Petzold A, de Boer JF, Schippling S et al (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9:921–932PubMedCrossRef
11.
go back to reference Gabilondo I, Martinez-Lapiscina EH, Fraga-Pumar E et al (2015) Dynamics of retinal injury after acute optic neuritis. Ann Neurol 77:517–528PubMedCrossRef Gabilondo I, Martinez-Lapiscina EH, Fraga-Pumar E et al (2015) Dynamics of retinal injury after acute optic neuritis. Ann Neurol 77:517–528PubMedCrossRef
12.
go back to reference Wicki CA, Hanson JVM, Schippling S (2018) Optical coherence tomography as a means to characterize visual pathway involvement in multiple sclerosis. Curr Opin Neurol 31:662–668PubMedCrossRef Wicki CA, Hanson JVM, Schippling S (2018) Optical coherence tomography as a means to characterize visual pathway involvement in multiple sclerosis. Curr Opin Neurol 31:662–668PubMedCrossRef
13.
go back to reference Paul F, Calabresi PA, Barkhof F et al (2021) Optical coherence tomography in multiple sclerosis: a 3-year prospective multicenter study. Ann Clin Transl Neurol 8:2235–2251PubMedPubMedCentralCrossRef Paul F, Calabresi PA, Barkhof F et al (2021) Optical coherence tomography in multiple sclerosis: a 3-year prospective multicenter study. Ann Clin Transl Neurol 8:2235–2251PubMedPubMedCentralCrossRef
14.
15.
go back to reference Gordon-Lipkin E, Chodkowski B, Reich DS et al (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69:1603–1609PubMedCrossRef Gordon-Lipkin E, Chodkowski B, Reich DS et al (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69:1603–1609PubMedCrossRef
16.
go back to reference Abalo-Lojo JM, Limeres CC, Gomez MA et al (2014) Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J Neuroophthalmol 34:23–28PubMedCrossRef Abalo-Lojo JM, Limeres CC, Gomez MA et al (2014) Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J Neuroophthalmol 34:23–28PubMedCrossRef
17.
go back to reference Saidha S, Al-Louzi O, Ratchford JN et al (2015) Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann Neurol 78:801–813PubMedPubMedCentralCrossRef Saidha S, Al-Louzi O, Ratchford JN et al (2015) Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann Neurol 78:801–813PubMedPubMedCentralCrossRef
18.
go back to reference Zivadinov R, Bergsland N, Cappellani R et al (2014) Retinal nerve fiber layer thickness and thalamus pathology in multiple sclerosis patients. Eur J Neurol 21:1137-e1161PubMedCrossRef Zivadinov R, Bergsland N, Cappellani R et al (2014) Retinal nerve fiber layer thickness and thalamus pathology in multiple sclerosis patients. Eur J Neurol 21:1137-e1161PubMedCrossRef
19.
go back to reference Jakimovski D, Zivadinov R, Vaughn CB, Ozel O, Weinstock-Guttman B (2021) Clinical effects associated with five-year retinal nerve fiber layer thinning in multiple sclerosis. J Neurol Sci 427:117552PubMedCrossRef Jakimovski D, Zivadinov R, Vaughn CB, Ozel O, Weinstock-Guttman B (2021) Clinical effects associated with five-year retinal nerve fiber layer thinning in multiple sclerosis. J Neurol Sci 427:117552PubMedCrossRef
20.
go back to reference Talman LS, Bisker ER, Sackel DJ et al (2010) Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 67:749–760PubMedPubMedCentral Talman LS, Bisker ER, Sackel DJ et al (2010) Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 67:749–760PubMedPubMedCentral
22.
go back to reference Vanburen JM (1963) Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 26:402–409PubMedCrossRef Vanburen JM (1963) Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 26:402–409PubMedCrossRef
23.
go back to reference Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898PubMedCrossRef Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898PubMedCrossRef
24.
25.
go back to reference Kolbe S, Bajraszewski C, Chapman C et al (2012) Diffusion tensor imaging of the optic radiations after optic neuritis. Hum Brain Mapp 33:2047–2061PubMedCrossRef Kolbe S, Bajraszewski C, Chapman C et al (2012) Diffusion tensor imaging of the optic radiations after optic neuritis. Hum Brain Mapp 33:2047–2061PubMedCrossRef
26.
go back to reference Reich DS, Smith SA, Gordon-Lipkin EM et al (2009) Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol 66:998–1006PubMedPubMedCentralCrossRef Reich DS, Smith SA, Gordon-Lipkin EM et al (2009) Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol 66:998–1006PubMedPubMedCentralCrossRef
27.
go back to reference Rocca MA, Mesaros S, Preziosa P et al (2013) Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. Mult Scler 19:1610–1617PubMedCrossRef Rocca MA, Mesaros S, Preziosa P et al (2013) Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. Mult Scler 19:1610–1617PubMedCrossRef
28.
go back to reference Audoin B, Fernando KT, Swanton JK, Thompson AJ, Plant GT, Miller DH (2006) Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. Brain 129:1031–1039PubMedCrossRef Audoin B, Fernando KT, Swanton JK, Thompson AJ, Plant GT, Miller DH (2006) Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. Brain 129:1031–1039PubMedCrossRef
29.
go back to reference Balk LJ, Steenwijk MD, Tewarie P et al (2015) Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J Neurol Neurosurg Psychiatry 86:419–424PubMedCrossRef Balk LJ, Steenwijk MD, Tewarie P et al (2015) Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J Neurol Neurosurg Psychiatry 86:419–424PubMedCrossRef
30.
go back to reference Ciccarelli O, Toosy AT, Hickman SJ et al (2005) Optic radiation changes after optic neuritis detected by tractography-based group mapping. Hum Brain Mapp 25:308–316PubMedPubMedCentralCrossRef Ciccarelli O, Toosy AT, Hickman SJ et al (2005) Optic radiation changes after optic neuritis detected by tractography-based group mapping. Hum Brain Mapp 25:308–316PubMedPubMedCentralCrossRef
31.
go back to reference Gabilondo I, Martinez-Lapiscina EH, Martinez-Heras E et al (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75:98–107PubMedCrossRef Gabilondo I, Martinez-Lapiscina EH, Martinez-Heras E et al (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75:98–107PubMedCrossRef
32.
go back to reference Sinnecker T, Oberwahrenbrock T, Metz I et al (2015) Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning–an ultrahigh-field MR pilot study. Eur Radiol 25:122–131PubMedCrossRef Sinnecker T, Oberwahrenbrock T, Metz I et al (2015) Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning–an ultrahigh-field MR pilot study. Eur Radiol 25:122–131PubMedCrossRef
33.
go back to reference Klistorner A, Sriram P, Vootakuru N et al (2014) Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology 82:2165–2172PubMedPubMedCentralCrossRef Klistorner A, Sriram P, Vootakuru N et al (2014) Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology 82:2165–2172PubMedPubMedCentralCrossRef
34.
go back to reference Al-Louzi O, Button J, Newsome SD, Calabresi PA, Saidha S (2017) Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: a case series. Mult Scler 23:1035–1039PubMedPubMedCentralCrossRef Al-Louzi O, Button J, Newsome SD, Calabresi PA, Saidha S (2017) Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: a case series. Mult Scler 23:1035–1039PubMedPubMedCentralCrossRef
35.
go back to reference Pawlitzki M, Horbrugger M, Loewe K, et al. MS optic neuritis-induced long-term structural changes within the visual pathway. Neurol Neuroimmunol Neuroinflamm 2020;7. Pawlitzki M, Horbrugger M, Loewe K, et al. MS optic neuritis-induced long-term structural changes within the visual pathway. Neurol Neuroimmunol Neuroinflamm 2020;7.
36.
go back to reference Jakimovski D, Kuhle J, Ramanathan M et al (2019) Serum neurofilament light chain levels associations with gray matter pathology: a 5-year longitudinal study. Ann Clin Transl Neurol 6:1757–1770PubMedPubMedCentralCrossRef Jakimovski D, Kuhle J, Ramanathan M et al (2019) Serum neurofilament light chain levels associations with gray matter pathology: a 5-year longitudinal study. Ann Clin Transl Neurol 6:1757–1770PubMedPubMedCentralCrossRef
37.
go back to reference Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedCrossRef Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedCrossRef
38.
go back to reference Jakimovski D, Gandhi S, Paunkoski I et al (2019) Hypertension and heart disease are associated with development of brain atrophy in multiple sclerosis: a 5-year longitudinal study. Eur J Neurol 26:87-e88PubMedCrossRef Jakimovski D, Gandhi S, Paunkoski I et al (2019) Hypertension and heart disease are associated with development of brain atrophy in multiple sclerosis: a 5-year longitudinal study. Eur J Neurol 26:87-e88PubMedCrossRef
39.
go back to reference Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489PubMedCrossRef Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489PubMedCrossRef
40.
go back to reference Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922PubMedCrossRef Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922PubMedCrossRef
41.
go back to reference Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055PubMedPubMedCentralCrossRef Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055PubMedPubMedCentralCrossRef
42.
go back to reference Zivadinov R, Tavazzi E, Hagemeier J et al (2018) The effect of glatiramer acetate on retinal nerve fiber layer thickness in patients with relapsing-remitting multiple sclerosis: a longitudinal optical coherence tomography study. CNS Drugs 32:763–770PubMedCrossRef Zivadinov R, Tavazzi E, Hagemeier J et al (2018) The effect of glatiramer acetate on retinal nerve fiber layer thickness in patients with relapsing-remitting multiple sclerosis: a longitudinal optical coherence tomography study. CNS Drugs 32:763–770PubMedCrossRef
43.
go back to reference Cruz-Herranz A, Balk LJ, Oberwahrenbrock T et al (2016) The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 86:2303–2309PubMedPubMedCentralCrossRef Cruz-Herranz A, Balk LJ, Oberwahrenbrock T et al (2016) The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 86:2303–2309PubMedPubMedCentralCrossRef
44.
go back to reference Schippling S, Balk LJ, Costello F et al (2015) Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 21:163–170PubMedCrossRef Schippling S, Balk LJ, Costello F et al (2015) Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 21:163–170PubMedCrossRef
45.
go back to reference Murphy OC, Sotirchos ES, Kalaitzidis G, et al. Trans-Synaptic Degeneration Following Acute Optic Neuritis in Multiple Sclerosis. Ann Neurol 2022. Murphy OC, Sotirchos ES, Kalaitzidis G, et al. Trans-Synaptic Degeneration Following Acute Optic Neuritis in Multiple Sclerosis. Ann Neurol 2022.
46.
go back to reference Kleerekooper I, Del Porto L, Dell’Arti L et al (2022) Pattern ERGs suggest a possible retinal contribution to the visual acuity loss in acute optic neuritis. Doc Ophthalmol 145:185–195PubMedCrossRef Kleerekooper I, Del Porto L, Dell’Arti L et al (2022) Pattern ERGs suggest a possible retinal contribution to the visual acuity loss in acute optic neuritis. Doc Ophthalmol 145:185–195PubMedCrossRef
47.
go back to reference Sharma S, Chitranshi N, Wall RV et al (2022) Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders. Surv Ophthalmol 67:411–426PubMedCrossRef Sharma S, Chitranshi N, Wall RV et al (2022) Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders. Surv Ophthalmol 67:411–426PubMedCrossRef
48.
go back to reference Jindahra P, Petrie A, Plant GT (2012) The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 135:534–541PubMedCrossRef Jindahra P, Petrie A, Plant GT (2012) The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 135:534–541PubMedCrossRef
49.
go back to reference Keller J, Sanchez-Dalmau BF, Villoslada P (2014) Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS ONE 9:e97444PubMedPubMedCentralCrossRef Keller J, Sanchez-Dalmau BF, Villoslada P (2014) Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS ONE 9:e97444PubMedPubMedCentralCrossRef
50.
51.
go back to reference Schneider CL, Prentiss EK, Busza A et al (2019) Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. Proc Biol Sci 286:20182733PubMedPubMedCentral Schneider CL, Prentiss EK, Busza A et al (2019) Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. Proc Biol Sci 286:20182733PubMedPubMedCentral
52.
go back to reference Meier PG, Maeder P, Kardon RH, Borruat FX (2015) Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. J Neuroophthalmol 35:112–116PubMedCrossRef Meier PG, Maeder P, Kardon RH, Borruat FX (2015) Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. J Neuroophthalmol 35:112–116PubMedCrossRef
53.
go back to reference Yamashita T, Miki A, Goto K et al (2016) Retinal ganglion cell atrophy in homonymous hemianopia due to acquired occipital lesions observed using cirrus high-definition-OCT. J Ophthalmol 2016:2394957PubMedPubMedCentralCrossRef Yamashita T, Miki A, Goto K et al (2016) Retinal ganglion cell atrophy in homonymous hemianopia due to acquired occipital lesions observed using cirrus high-definition-OCT. J Ophthalmol 2016:2394957PubMedPubMedCentralCrossRef
54.
go back to reference Ye C, Kwapong WR, Tao W et al (2022) Alterations of optic tract and retinal structure in patients after thalamic stroke. Front Aging Neurosci 14:942438PubMedPubMedCentralCrossRef Ye C, Kwapong WR, Tao W et al (2022) Alterations of optic tract and retinal structure in patients after thalamic stroke. Front Aging Neurosci 14:942438PubMedPubMedCentralCrossRef
55.
go back to reference Ye C, Kwapong WR, Tao W, et al. Characterization of Macular Structural and Microvascular Changes in Thalamic Infarction Patients: A Swept-Source Optical Coherence Tomography-Angiography Study. Brain Sci 2022;12. Ye C, Kwapong WR, Tao W, et al. Characterization of Macular Structural and Microvascular Changes in Thalamic Infarction Patients: A Swept-Source Optical Coherence Tomography-Angiography Study. Brain Sci 2022;12.
56.
go back to reference Button J, Al-Louzi O, Lang A et al (2017) Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: a retrospective study. Neurology 88:525–532PubMedPubMedCentralCrossRef Button J, Al-Louzi O, Lang A et al (2017) Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: a retrospective study. Neurology 88:525–532PubMedPubMedCentralCrossRef
57.
go back to reference Schuff N, Tosun D, Insel PS et al (2012) Nonlinear time course of brain volume loss in cognitively normal and impaired elders. Neurobiol Aging 33:845–855PubMedCrossRef Schuff N, Tosun D, Insel PS et al (2012) Nonlinear time course of brain volume loss in cognitively normal and impaired elders. Neurobiol Aging 33:845–855PubMedCrossRef
Metadata
Title
Multiple sclerosis optic neuritis and trans-synaptic pathology on cortical thinning in people with multiple sclerosis
Authors
Ranjani Ganapathy Subramanian
Robert Zivadinov
Niels Bergsland
Michael G. Dwyer
Bianca Weinstock-Guttman
Dejan Jakimovski
Publication date
17-04-2023
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 8/2023
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-023-11709-y

Other articles of this Issue 8/2023

Journal of Neurology 8/2023 Go to the issue