Skip to main content
Top
Published in: Journal of Neurology 4/2018

01-04-2018 | Review

Advances in immunotherapeutic research for glioma therapy

Authors: Jeremy Tetsuo Miyauchi, Stella E. Tsirka

Published in: Journal of Neurology | Issue 4/2018

Login to get access

Abstract

Gliomas are primary malignancies of the brain. Tumors are staged based on malignancy, nuclear atypia, and infiltration of the surrounding brain parenchyma. Tumors are often diagnosed once patients become symptomatic, at which time the lesion is sizable. Glioblastoma (grade IV glioma) is highly aggressive and difficult to treat. Most tumors are diagnosed de novo. The gold standard of therapy, implemented over a decade ago, consists of fractionated radiotherapy and temozolomide, but unfortunately, chemotherapeutic resistance arises. Recurrence is common after initial therapy. The tumor microenvironment plays a large role in cancer progression and its manipulation can repress progression. The advent and implementation of immunotherapy, via manipulation and activation of cytotoxic T cells, have had an outstanding impact on reducing morbidity and mortality associated with peripheral cancers under certain clinical circumstances. An arsenal of immunotherapeutics is currently under clinical investigation for safety and efficacy in the treatment of newly diagnosed and recurrent high grade gliomas. These immunotherapeutics encompass antibody–drug conjugates, autologous infusions of modified chimeric antigen receptor expressing T cells, peptide vaccines, autologous dendritic cell vaccines, immunostimulatory viruses, oncolytic viruses, checkpoint blockade inhibitors, and drugs which alter the behavior of innate immune cells. Effort is focusing on determining which patient populations will benefit the most from these treatments and why. Research addressing synergism between treatment options is gaining attention. While advances in the treatment of glioma stagnated in the past, we may see a considerable evolution in the management of the disease in the upcoming years.
Literature
1.
go back to reference Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–1850CrossRefPubMed Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–1850CrossRefPubMed
2.
go back to reference Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62CrossRefPubMedCentralPubMed Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62CrossRefPubMedCentralPubMed
4.
go back to reference Wang Z, Terakawa Y, Goto H, Tsuyuguchi N, Sato H et al (2016) Glioblastoma in long-term survivors of acute lymphoblastic leukemia: report of two cases. Pediatr Int 58:520–523CrossRefPubMed Wang Z, Terakawa Y, Goto H, Tsuyuguchi N, Sato H et al (2016) Glioblastoma in long-term survivors of acute lymphoblastic leukemia: report of two cases. Pediatr Int 58:520–523CrossRefPubMed
5.
go back to reference Linet MS, Kim KP, Rajaraman P (2009) Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol 39(Suppl 1):S4–S26CrossRefPubMed Linet MS, Kim KP, Rajaraman P (2009) Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol 39(Suppl 1):S4–S26CrossRefPubMed
6.
go back to reference Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16:896–913CrossRefPubMedCentralPubMed Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16:896–913CrossRefPubMedCentralPubMed
7.
go back to reference Hou L, Veeravagu A, Hsu A, Tse V (2006) Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg Focus 20:E3CrossRef Hou L, Veeravagu A, Hsu A, Tse V (2006) Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg Focus 20:E3CrossRef
8.
go back to reference Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedCentralPubMed Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedCentralPubMed
9.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
11.
go back to reference da Fonseca AC, Badie B (2013) Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013:264124PubMed da Fonseca AC, Badie B (2013) Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013:264124PubMed
12.
go back to reference Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H et al (2004) Glioblastoma cells release factors that disrupt blood–brain barrier features. Acta Neuropathol 107:272–276CrossRefPubMed Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H et al (2004) Glioblastoma cells release factors that disrupt blood–brain barrier features. Acta Neuropathol 107:272–276CrossRefPubMed
13.
go back to reference Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Asp Med 33:579–589CrossRef Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Asp Med 33:579–589CrossRef
14.
go back to reference Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622CrossRefPubMed Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622CrossRefPubMed
15.
go back to reference Wolf RL, Wang J, Wang S, Melhem ER, O’Rourke DM et al (2005) Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging 22:475–482CrossRefPubMed Wolf RL, Wang J, Wang S, Melhem ER, O’Rourke DM et al (2005) Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging 22:475–482CrossRefPubMed
16.
go back to reference Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152CrossRefPubMed Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152CrossRefPubMed
17.
go back to reference Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682CrossRefPubMedCentralPubMed Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682CrossRefPubMedCentralPubMed
18.
go back to reference Domingues P, Gonzalez-Tablas M, Otero A, Pascual D, Miranda D et al (2016) Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 53:1–15CrossRefPubMed Domingues P, Gonzalez-Tablas M, Otero A, Pascual D, Miranda D et al (2016) Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 53:1–15CrossRefPubMed
19.
go back to reference Yang SH, Hong YK, Yoon SC, Kim BS, Lee YS et al (2007) Radiotherapy plus concurrent and adjuvant procarbazine, lomustine, and vincristine chemotherapy for patients with malignant glioma. Oncol Rep 17:1359–1364PubMed Yang SH, Hong YK, Yoon SC, Kim BS, Lee YS et al (2007) Radiotherapy plus concurrent and adjuvant procarbazine, lomustine, and vincristine chemotherapy for patients with malignant glioma. Oncol Rep 17:1359–1364PubMed
20.
go back to reference Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355CrossRefPubMedCentralPubMed Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355CrossRefPubMedCentralPubMed
21.
go back to reference Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708CrossRefPubMedCentralPubMed Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708CrossRefPubMedCentralPubMed
22.
go back to reference Phillips AC, Boghaert ER, Vaidya KS, Mitten MJ, Norvell S et al (2016) ABT-414, an antibody–drug conjugate targeting a tumor-selective EGFR epitope. Mol Cancer Ther 15:661–669CrossRefPubMed Phillips AC, Boghaert ER, Vaidya KS, Mitten MJ, Norvell S et al (2016) ABT-414, an antibody–drug conjugate targeting a tumor-selective EGFR epitope. Mol Cancer Ther 15:661–669CrossRefPubMed
25.
go back to reference Ren PP, Li M, Li TF, Han SY (2017) Anti-EGFRvIII chimeric antigen receptor-modified T cells for adoptive cell therapy of glioblastoma. Curr Pharm Des 23(14):2113–2116CrossRefPubMedCentralPubMed Ren PP, Li M, Li TF, Han SY (2017) Anti-EGFRvIII chimeric antigen receptor-modified T cells for adoptive cell therapy of glioblastoma. Curr Pharm Des 23(14):2113–2116CrossRefPubMedCentralPubMed
26.
go back to reference Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569CrossRefPubMedCentralPubMed Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569CrossRefPubMedCentralPubMed
28.
go back to reference Swartz AM, Li QJ, Sampson JH (2014) Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy 6:679–690CrossRefPubMedCentralPubMed Swartz AM, Li QJ, Sampson JH (2014) Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy 6:679–690CrossRefPubMedCentralPubMed
29.
go back to reference Malkki H (2016) Trial watch: glioblastoma vaccine therapy disappointment in phase III trial. Nat Rev Neurol 12:190CrossRefPubMed Malkki H (2016) Trial watch: glioblastoma vaccine therapy disappointment in phase III trial. Nat Rev Neurol 12:190CrossRefPubMed
30.
31.
go back to reference Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM et al (2015) First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine 33:2690–2696CrossRefPubMed Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM et al (2015) First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine 33:2690–2696CrossRefPubMed
32.
go back to reference Phuphanich S, Rudnick J, Chu R, Mazer M, Wang H et al (2009) A phase I trial of tumor-associated antigen-pulsed dendritic cell immunotherapy for patients with brain stem glioma and glioblastoma. J Clin Oncol 27:2032 Phuphanich S, Rudnick J, Chu R, Mazer M, Wang H et al (2009) A phase I trial of tumor-associated antigen-pulsed dendritic cell immunotherapy for patients with brain stem glioma and glioblastoma. J Clin Oncol 27:2032
33.
go back to reference Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L et al (2016) Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 8:328ra27CrossRefPubMed Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L et al (2016) Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 8:328ra27CrossRefPubMed
34.
go back to reference Akimoto J (2016) Photodynamic therapy for malignant brain tumors. Neurol Med Chir (Tokyo) 56:151–157CrossRef Akimoto J (2016) Photodynamic therapy for malignant brain tumors. Neurol Med Chir (Tokyo) 56:151–157CrossRef
35.
go back to reference Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M et al (2003) Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 21:3826–3835CrossRefPubMed Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M et al (2003) Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 21:3826–3835CrossRefPubMed
36.
go back to reference Polyzoidis S, Ashkan K (2014) DCVax(R)-L–developed by Northwest biotherapeutics. Hum Vaccines Immunother 10:3139–3145CrossRef Polyzoidis S, Ashkan K (2014) DCVax(R)-L–developed by Northwest biotherapeutics. Hum Vaccines Immunother 10:3139–3145CrossRef
37.
go back to reference Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H et al (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135CrossRefPubMed Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H et al (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135CrossRefPubMed
38.
go back to reference Yang L, Guo G, Niu XY, Liu J (2015) Dendritic cell-based immunotherapy treatment for glioblastoma multiforme. Biomed Res Int 2015:717530PubMedCentralPubMed Yang L, Guo G, Niu XY, Liu J (2015) Dendritic cell-based immunotherapy treatment for glioblastoma multiforme. Biomed Res Int 2015:717530PubMedCentralPubMed
41.
go back to reference Ji N, Weng D, Liu C, Gu Z, Chen S et al (2016) Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget 7:4369–4378PubMed Ji N, Weng D, Liu C, Gu Z, Chen S et al (2016) Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget 7:4369–4378PubMed
42.
43.
go back to reference Chiu TL, Wang MJ, Su CC (2012) The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci 19:45CrossRefPubMedCentralPubMed Chiu TL, Wang MJ, Su CC (2012) The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci 19:45CrossRefPubMedCentralPubMed
44.
go back to reference He Y, Rivard CJ, Rozeboom L, Yu H, Ellison K et al (2016) Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci 107:1193–1197CrossRefPubMedCentralPubMed He Y, Rivard CJ, Rozeboom L, Yu H, Ellison K et al (2016) Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci 107:1193–1197CrossRefPubMedCentralPubMed
45.
go back to reference Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553CrossRefPubMedCentralPubMed Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553CrossRefPubMedCentralPubMed
46.
go back to reference Marabelle A, Kohrt H, Sagiv-Barfi I, Ajami B, Axtell RC et al (2013) Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 123:2447–2463CrossRefPubMedCentralPubMed Marabelle A, Kohrt H, Sagiv-Barfi I, Ajami B, Axtell RC et al (2013) Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 123:2447–2463CrossRefPubMedCentralPubMed
47.
go back to reference Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ et al (2016) Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 4:124–135CrossRefPubMed Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ et al (2016) Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 4:124–135CrossRefPubMed
48.
go back to reference Wang Z, Zhang C, Liu X, Wang Z, Sun L et al (2016) Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma. Oncoimmunology 5:e1196310CrossRefPubMedCentralPubMed Wang Z, Zhang C, Liu X, Wang Z, Sun L et al (2016) Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma. Oncoimmunology 5:e1196310CrossRefPubMedCentralPubMed
49.
go back to reference De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23:277–286CrossRefPubMed De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23:277–286CrossRefPubMed
50.
go back to reference Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E et al (2016) Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov 6:1230–1236CrossRefPubMedCentralPubMed Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E et al (2016) Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov 6:1230–1236CrossRefPubMedCentralPubMed
51.
52.
go back to reference Cai J, Zhang W, Yang P, Wang Y, Li M et al (2015) Identification of a 6-cytokine prognostic signature in patients with primary glioblastoma harboring M2 microglia/macrophage phenotype relevance. PLoS ONE 10:e0126022CrossRefPubMedCentralPubMed Cai J, Zhang W, Yang P, Wang Y, Li M et al (2015) Identification of a 6-cytokine prognostic signature in patients with primary glioblastoma harboring M2 microglia/macrophage phenotype relevance. PLoS ONE 10:e0126022CrossRefPubMedCentralPubMed
53.
go back to reference Zhai H, Heppner FL, Tsirka SE (2011) Microglia/macrophages promote glioma progression. Glia 59:472–485CrossRefPubMed Zhai H, Heppner FL, Tsirka SE (2011) Microglia/macrophages promote glioma progression. Glia 59:472–485CrossRefPubMed
54.
go back to reference Du R, Lu KV, Petritsch C, Liu P, Ganss R et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220CrossRefPubMedCentralPubMed Du R, Lu KV, Petritsch C, Liu P, Ganss R et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220CrossRefPubMedCentralPubMed
55.
go back to reference Li M, Li Z, Ren H, Jin WN, Wood K et al (2016) Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 37(7):2383–2395CrossRefPubMedCentralPubMed Li M, Li Z, Ren H, Jin WN, Wood K et al (2016) Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 37(7):2383–2395CrossRefPubMedCentralPubMed
56.
go back to reference Stafford JH, Hirai T, Deng L, Chernikova SB, Urata K et al (2016) Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol 18:797–806CrossRefPubMed Stafford JH, Hirai T, Deng L, Chernikova SB, Urata K et al (2016) Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol 18:797–806CrossRefPubMed
57.
go back to reference Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L et al (2016) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol 18:557–564CrossRefPubMed Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L et al (2016) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol 18:557–564CrossRefPubMed
58.
go back to reference Katoh H, Watanabe M (2015) Myeloid-derived suppressor cells and therapeutic strategies in cancer. Mediat Inflamm 2015:159269CrossRef Katoh H, Watanabe M (2015) Myeloid-derived suppressor cells and therapeutic strategies in cancer. Mediat Inflamm 2015:159269CrossRef
59.
go back to reference Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272CrossRefPubMedCentralPubMed Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272CrossRefPubMedCentralPubMed
60.
go back to reference Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113:4476–4481CrossRefPubMedCentralPubMed Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113:4476–4481CrossRefPubMedCentralPubMed
61.
go back to reference Sarkar S, Doring A, Zemp FJ, Silva C, Lun X et al (2014) Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 17:46–55CrossRefPubMed Sarkar S, Doring A, Zemp FJ, Silva C, Lun X et al (2014) Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 17:46–55CrossRefPubMed
63.
go back to reference Frei K, Gramatzki D, Tritschler I, Schroeder JJ, Espinoza L et al (2015) Transforming growth factor-beta pathway activity in glioblastoma. Oncotarget 6:5963–5977CrossRefPubMedCentralPubMed Frei K, Gramatzki D, Tritschler I, Schroeder JJ, Espinoza L et al (2015) Transforming growth factor-beta pathway activity in glioblastoma. Oncotarget 6:5963–5977CrossRefPubMedCentralPubMed
64.
go back to reference Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN (1992) Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg 76:799–804CrossRefPubMed Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN (1992) Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg 76:799–804CrossRefPubMed
65.
go back to reference Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410CrossRefPubMed Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410CrossRefPubMed
66.
go back to reference Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R et al (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 102:419–424CrossRefPubMed Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R et al (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 102:419–424CrossRefPubMed
67.
go back to reference Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380CrossRefPubMed Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380CrossRefPubMed
68.
go back to reference Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A et al (2008) Microglia-derived TGF-beta as an important regulator of glioblastoma invasion–an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27:918–930CrossRefPubMed Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A et al (2008) Microglia-derived TGF-beta as an important regulator of glioblastoma invasion–an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27:918–930CrossRefPubMed
69.
go back to reference Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY et al (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961CrossRefPubMed Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY et al (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961CrossRefPubMed
70.
go back to reference Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559CrossRefPubMedCentralPubMed Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559CrossRefPubMedCentralPubMed
71.
go back to reference Rodon J, Carducci MA, Sepulveda-Sanchez JM, Azaro A, Calvo E et al (2015) First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 21:553–560CrossRefPubMed Rodon J, Carducci MA, Sepulveda-Sanchez JM, Azaro A, Calvo E et al (2015) First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 21:553–560CrossRefPubMed
72.
go back to reference Hagner PR, Man HW, Fontanillo C, Wang M, Couto S et al (2015) CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126:779–789CrossRefPubMedCentralPubMed Hagner PR, Man HW, Fontanillo C, Wang M, Couto S et al (2015) CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126:779–789CrossRefPubMedCentralPubMed
Metadata
Title
Advances in immunotherapeutic research for glioma therapy
Authors
Jeremy Tetsuo Miyauchi
Stella E. Tsirka
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 4/2018
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-017-8695-5

Other articles of this Issue 4/2018

Journal of Neurology 4/2018 Go to the issue